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To inform fisheries management decisions (i.e., stocking rates, 
harvest regulations), rate functions including growth, mortality, 
and recruitment should be considered (Ricker 1975). Although 
growth and mortality functions are frequently assessed, recruit-
ment and its associated variability is difficult to quantify and sub-
sequently assessed less frequently (Isermann et al. 2002). Variabil-
ity in recruitment can also affect estimates of other population 
metrics (i.e., size structure, growth, and mortality; Ricker 1975, 
Isermann et al. 2002, Quist 2007). Growth and mortality are gen-
erally easier to assess from one-time samples while recruitment 
is often variable and difficult to determine quantitatively without 
tracking long-term trends in age structured catch (Ricker 1975, 
Isermann et al. 2002, Quist 2007). These data are often unavailable 
or unrealistically attainable due to time and funding constraints 

(Isermann et al. 2002). Therefore, the need exists for managers to 
assess population recruitment with one-time samples. 

Over the past few decades, three different strategies have been 
employed to evaluate recruitment patterns derived from single 
sampling events. These include the recruitment variability index 
(RVI), recruitment coefficient of determination (RCD), and the 
use of studentized residuals from catch-curve regressions (Guy 
and Willis 1995, Maceina 1997, Isermann et al. 2002, Quist 2007). 
The RVI was introduced by Guy and Willis (1995) for assessment 
of black crappie (Pomoxis nigromaculatus) recruitment and evalu-
ated by Isermann et al. (2002) and Quist (2007) using simulation 
models and long-term datasets to index crappie (Pomoxis spp., 
122 populations, one-time samples) and walleye (Sander vitreus, 
8 populations, 2–7 annual samples dependent on population), 
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respectively. The method has also recently been applied to buffalo 
fishes (Ictiobus spp.) and freshwater drum (Aplodinotus grunniens) 
recruitment (e.g., Montague et al. 2024). The RVI is influenced by 
the cumulative relative frequency of the sample’s age-frequency  
distribution and the proportion of missing age classes in the sam-
ple (Guy 1993, Guy and Willis 1995). It is intended to work with 
species that commonly have missing age classes in samples, but 
RVI can have issues indexing recruitment for populations with 
high fluctuation in recruitment but no missing age classes (Guy 
and Willis 1995, Isermann et al. 2002). The RCD was introduced 
by Isermann et al. (2002) and utilizes the coefficient of determina-
tion (r2) of the catch curve to index recruitment variability (Quist 
2007). It simply describes variation in catch at age not accounted 
for by age (Isermann et al. 2002). 

Ostensibly, channel catfish (Ictalurus punctatus) recruitment 
variability has not been indexed, however channel catfish com-
monly exhibit variability in recruitment (i.e., missing or underrep-
resented age classes) and population density in reservoirs (Hubert 
1999, Holley 2006, Settineri 2015, Tyszko et al. 2021). Reasons 
for variable recruitment patterns likely include interruptions in 
spawning activity due to water temperature fluctuations from 
cold weather, predation on eggs and fry, and limited availability 
of spawning habitat (especially in smaller impoundments; Hubert 
1999). Further evaluation of practical recruitment indexing meth-
ods (i.e., from single sampling events) as well as identification of 
potential drivers in recruitment variability may provide biologists 
with additional information needed for improved management of 

channel catfish populations. Therefore, the objectives of this study 
were to 1) assess the feasibility of indexing channel catfish recruit-
ment variability with single samples using RVI and RCD and 2) 
Examine spatial, abiotic, and biotic factors that influence recruit-
ment variability across study reservoirs.

Methods
Study Area

Channel catfish were sampled from 15 reservoirs located in 
the Cross Timbers and Central Great Plains ecoregions of central 
Oklahoma (Figure 1; Woods et al. 2005). Reservoir surface area was 
8.9–1363.8 ha (Table 1). Primary uses for each reservoir include 
municipal water supply, flood control, and recreation (OWRB 
2024). Siltation within the river reservoir interface and limited 
amounts of aquatic vegetation and standing timber/brush piles are 
present at all 15 reservoirs (A. D. Griffin, personal observation). 
Substrates are composed of a mixture of sandstone, coarse grav-
el, clay, and sand with riprap rock present along dams and fishing 
jetties (A. D. Griffin, personal observation). All study reservoirs 
contain populations of channel catfish, white crappie (Pomoxis an-
nularis), largemouth bass (Micropterus nigricans), common carp 
(Cyprinus carpio), and flathead catfish (Pylodictis olivaris; OFAA 
2022). However, many of the reservoirs vary in their composition 
of other species based on management practices. For instance, 
Carl Blackwell Reservoir has hatchery-sustained saugeye (Sander 
vitreus x S. canadensis) and hybrid striped bass (Morone chrysops 
x M. saxatilis) populations (OFAA 2022). McMurtry, Guthrie, and 

Figure 1. Study area map showing distribution of the 15 study reservoirs across the Central Great Plains and Cross Timbers ecoregions of central Oklahoma.
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Pauls Valley reservoirs contain saugeye, and Wiley Post Reser-
voir contains a stunted blue catfish (Ictalurus furcatus) population 
(OFAA 2022). Primary forage species across all reservoirs include 
gizzard shad (Dorosoma cepedianum), Lepomis spp., and inland 
silversides (Menidia beryllina; OFAA 2022). Trophic class ranges 
from mesotrophic to hypereutrophic and turbidity varies greatly 
across systems (OWRB 2024). Channel catfish were stocked in 
nine reservoirs with varying regularity during the age range of fish 
sampled while the remaining six were not stocked (Table 1). 

Sampling
Channel catfish collection dates ranged from 2019–2023 during 

the months of July, August, and September (one sample per reser-
voir). Tandem sets of three baited hoop nets were used in all study 
reservoirs. These sets consisted of two 25-mm and one 12.5-mm 
bar mesh, 3.4-m long nets tied 0.9 m apart. The smaller mesh nets 
were used in conjunction with the standard nets to capture small-
er fish in potentially stunted populations (Michaletz and Sullivan 
2002, Montague et al. 2022, Griffin et al. 2023). Nets were set ac-
cording to standardized Oklahoma Department of Wildlife Con-
servation (ODWC) protocols and the methods of Montague et al. 
(2022) and Griffin et al. (2023). Sites were selected randomly and 
included five to ten sets per sample (dependent on reservoir size). 
Nets were baited with fish food pellets (Sportsman’s Choice Trophy 
Fish Feed-Multispecies Formula, Cargill Animal Nutrition, Min-
neapolis, Minnesota) and fished for 72 hr. Temperature (C) and 
dissolved oxygen (DO) were recorded 0.5 m above the substrate 
during each sample to ensure adequate DO levels (≥4 mg/L) to 

avoid unnecessary mortality (YSI, model Pro 2030, Yellow Springs 
Instruments, Yellow Springs, Ohio).

Total length (TL; mm) and weight (g) were recorded for all 
channel catfish (except for the Langston Reservoir and Wiley Post 
Reservoir samples where only TL was recorded). Up to 20 fish 
per 25-mm TL group were euthanized for age estimation using a  
1:1 ice water slurry (Blessing et al. 2010). Fish were then brought 
back to the Oklahoma Fisheries Research Laboratory (OFRL), 
Norman, or another regional office where sex and maturity were 
determined through visual examination of the gonads and lapilli 
otoliths were removed for age estimation (Davis and Posey 1958, 
Perry and Carver 1972, Buckmeier et al. 2002).

Otolith preparation followed the methods of Waters et al. 
(2020), disregarding the browning process. Specifically, otoliths 
were mounted in a silicon mold using epoxy, cut in the transverse 
plane, polished until all annuli were visible, and viewed under a 
dissecting microscope capable of 130× magnification with the aid 
of a fiber optic filament attached to a light source. Initial age esti-
mation was carried out by two independent readers and disagree-
ments in initial age estimates were settled with a final consensus 
read (Hoff et al. 1997). Ages were then assigned to the entire sam-
ple using an age-length key. 

Analysis
The RVI was calculated per the methods described by Guy and 

Willis (1995) and is described as:

RVI = [SN / (Nm + Np )] – Nm /Np ,

Table 1. Study reservoir parameters for 15 Oklahoma reservoirs and channel catfish populations including area (ha), sample year, stocking ratio (number of years stocked vs number of age classes in the 
sample; reservoirs with no value were not stocked), sample size (n), age at recruitment (minimum age fully recruited to the gear as determined by catch curve), total number of age classes included in the 
analysis, recruitment variability index values (RVI), recruitment coefficient of determination values (RCD), mean catch per unit effort [Mean CPUE; number of fish (72-hr set)–1] of age classes used in the 
analysis, and coefficient of variation (CV) in mean CPUE.

Reservoir
Area
(ha) Sample Year

Stocking Ratio  
(%) n

Age at 
Recruitment # Age Classes RVI RCD Mean CPUE CV (%)

Elmore City 23.1 2021 56 248 2 9 0.68 0.21 3.24 750

Langston 169.9 2020 90 346 1 10 0.79 0.46 3.42 1114

Liberty 79.7 2021 17 380 7 6 0.53 0.06 5.85 720

Lindsay 8.9 2022 25 167 2 8 0.47 0.02 2.32 512

Meeker 85.4 2019 45 815 2 11 0.74 0.84 10.11 1228

Pauls Valley 303.5 2023 18 369 3 11 0.58 0.10 3.02 1058

Tecumseh 51.4 2020 75 498 6 12 0.44 0.39 12.08 238

Wetumka 68.4 2020 100 129 6 10 0.88 0.56 1.70 323

Wiley Post 122.2 2020 56 241 2 9 0.57 0.23 1.82 801

Blackwell 1363.8 2020 – 291 3 14 0.50 0.26 4.06 696

Chandler 72 2021 – 624 4 9 0.82 0.21 15.37 337

El Reno 68.8 2021 – 117 2 7 0.35 0.002 1.96 760

Guthrie 82.9 2021 – 282 3 9 0.56 0.02 4.30 952

McMurtry 467 2022 – 757 3 9 0.71 0.53 6.15 1004

Purcell 63.5 2021 – 97 5 8 0.27 0.08 1.42 423
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where SN equals the sum of cumulative relative frequency for ages 
present in the sample, Nm is the number of missing age classes (be-
tween minimum age recruited to the gear and last age represent-
ed), Np is the number of age classes present, and Np must exceed 
Nm. The scale for RVI values is -1 to 1 with 1 indicating no variabil-
ity in recruitment (Guy and Willis 1995). The RCD was calculated 
from weighted catch curves per the methods of Isermann et al.  
(2002) and Quist (2007). Age at recruitment ranged from 1–7  
dependent on the individual population and was set accordingly 
using the youngest age class fully recruited to the gear based on the 
catch-curve (Table 1). Year classes with less than two fish were only 
included if successive year classes included more than two fish or 
were not present in the sample (Isermann et al. 2002). 

Quartile-based range categories for RVI and RCD were used to 
subjectively describe patterns in recruitment variation and agree-
ment rates were compared between the two indices (Isermann et al. 
2002; Table 2). Spearman’s rank correlation (rs ) was used to gauge 
strength of the correlation of RVI and RCD across all samples 
(Spearman 1904, Guy and Willis 1995, Isermann et al. 2002). To in-
vestigate the assumption that stocked lakes would artificially exhib-
it higher recruitment stability, we used two-sample t-tests (Welch 
1947) to determine if RVI and RCD differed significantly between 
stocked and unstocked reservoirs. Separate tests were conducted 
for each index. We also used Shapiro-Wilk normality and Bartlett 
tests to confirm assumptions of normality and homogeneous vari-
ances, respectively (Bartlett 1937, Shapiro and Wilk 1965). 

Recognizing that previous work developed these indices using 
long-term data sets, we sought to determine the utility of using the 
RVI and RCD as tools to index variable recruitment based on em-
pirical data from single sampling events to see if the indices still 
tracked uneven recruitment (Isermann et al. 2002, Quist 2007). To 
do so, we used coefficients of variation (CV) in the mean CPUE 
over the range of ages described above for each sample as a measure 
of recruitment (Quist 2007). We then used linear regression anal-
yses to determine if the RVI and RCD were related to CV in mean 
CPUE across all, stocked, and unstocked samples. Specifically, a 
Breusch-Pagan test was used to test for heteroscedasticity in the 
simple linear regression model and a subsequent weighted linear 

regression was used to account for the presence of heteroscedastici-
ty (Breusch and Pagan 1979). Analyses listed above were performed 
using the Oklahoma Fisheries Analysis Application (OFAA 2022) 
and Program R (R Core Team 2022). We assigned significance for 
all comparisons at α = 0.10 to increase power as some comparisons 
had low sample sizes (e.g., unstocked reservoirs n = 6). 

To better determine spatial, abiotic, and biotic drivers of re-
cruitment variability based on RVI estimates, we hypothesized po-
tential factors for all three categories that were readily available for 
the study reservoirs. Spatial drivers available were latitude and lon-
gitude, common variables known to influence population dynam-
ics (Power and McKinley 1997, Belk and Houston 2002). Available 
abiotic variables included elevation, maximum reservoir depth at 
standard pool, shoreline length at standard pool, reservoir storage, 
and reservoir surface area at standard pool. Biotic variables were 
obtained from catch data and included PSD-Q (proportional size 
distribution of fish ≥ quality size) mean CPUE [catch per unit ef-
fort; number of fish (72-hr set)–1], stocking ratio of the reservoir 
(ratio of number of years stocked to number of age classes in sam-
ple), mean length at age three (average age fully recruited to the 
gear), maximum total length observed, and annual mortality (A). 
An intercept-only model (i.e., null model) was also included to de-
termine the viability of the candidate set rankings (i.e., if variables 
had better predictive potential than a null hypothesis; Montague et 
al. 2023, Zentner et al. 2023). 

To avoid using variables that would be redundant in our anal-
ysis, we first examined simple correlations between drivers to de-
termine which variables tracked similar relationships within the 
dataset. Variables were assumed to track similar relationships when  
r ≥ 0.7 (Booth 1994, Dormann et al. 2013, Akoglu 2018). Elevation 
was removed due to its strong negative correlation with longitude 
(r = -0.84). Also, since reservoir storage and shoreline length were 
highly correlated with surface area at standard pool (all r > 0.99), 
we strictly used surface area for the model as it has been shown to 
be a driver in the recruitment and abundance of fishes (e.g., in-
creased reservoir size results in higher recruitment stability and 
subsequent abundance), presuming that increased surface area 
means greater habitat diversity and availability (Jackson and Fran-
cis 1999, Nate et al. 2000). As with increased surface area, we hy-
pothesized that increased reservoir depth could relate to more sta-
ble recruitment due to greater accessibility to various habitat types 
including spawning and nursery cover. We also hypothesized that 
biotic parameters would represent rate functions that may lead 
to bias due to size or environmental based influences on capture  
(Isermann et al. 2002, Michaletz and Sullivan 2002, Columbo et al. 
2008, Buckmeier and Schlechte 2009, Bodine et al. 2013). Higher 
values for PSD-Q and CPUE were predicted to reflect more stable 
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Table 2. Channel catfish recruitment variability categories based on the recruitment variability index 
(RVI) and recruitment coefficient of determination (RCD) calculated for 15 Oklahoma channel catfish 
populations.

Recruitment Category Quartile Range RVI Range RCD Range

Variable 0–25 0.27–0.52 0.002–0.079

Mod variable 26–50 0.53–0.69 0.080–0.226

Mod consistent 51–75 0.70–0.75 0.227–0.527

Consistent 76–100 0.76–1.00 0.528–1.000
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recruitment and inflated stocking ratio values should indicate arti-
ficially stabilized recruitment through the introduction of stocked 
fish. We propose that low recruitment variability could decrease 
size (mean length, maximum TL) due to increased fish abundance 
and intraspecific competition and that A would increase as well. 

To determine if any hypothesized spatial, abiotic, or biotic vari-
ables were related to recruitment variability (based on RVI), we used 
an information-theoretic approach to compare the predictive poten-
tial of variables (Burnham and Anderson 2002). Given the sample 
size of reservoirs (n = 15), only single variable models were used 
(Harrell 2001). Candidate models were ranked using Akaike infor-
mation criterion corrected for small sample size (AICc; Hurvich and 
Tsai 1989). We considered models within 2 ΔAICc of the top candi-
date model to have equal support relative to the top ranked model 
(Burnham and Anderson 2002). We also estimated coefficients of 
determination (r2), AICc weights (wi), and evidence ratios (estimat-
ed via wi) for each candidate model (Royall 1997, Burnham and 
Anderson 2002). All models were run using a Gaussian distributed 
generalized linear model (McCullagh and Nelder 1989) in Program 
R (R Core Team 2022). Each model was assessed for normality using 
a Shapiro-Wilks normality test on the residuals. Homoscedasticity 
and points with leverage, or influential points, were assessed using 
residual diagnostic plots (McCullagh and Nelder 1989). Reciprocal 
or log10 transformations (Zar 1999) were used to transform predic-
tor variables that exhibited heteroscedasticity or had points exhibit-
ing leverage or influence without transformation. 

Results
Values for RVI and RCD had comparable upper limits and dif-

fering lower limits, with ranges of 0.35–0.88 and <0.01–0.84, re-
spectively. However, ranges among quartiles differed considerably 
(Table 2). Agreement among recruitment categories between RVI 
and RCD was 60% (9 of 15) and agreement within one or two cate-
gories was 80% (12 of 15) and 93% (14 of 15) respectively (Table 2). 
Small or missing age classes negatively impacted RCD values dis-
proportionately compared to RVI values. Values of RVI and RCD 
were positively correlated (rs = 0.51, P = 0.05) across all systems 
suggesting both indices track each other to some degree (Figure 2).  
Data were distributed normally for both RVI and RCD among 
stocked and unstocked reservoirs, respectively (W = 0.93, P = 0.49; 
W = 0.89, P = 0.31). Between stocked and unstocked reservoirs, 
both the RVI (t7.18 = 0.63, P = 0.55) and RCD (t12.80 = 1.13, P = 0.28) 
did not differ significantly. Variance was homogenous for RVI  
(K2 = 0.35, df = 1, P = 0.56) and RCD (K2 = 0.72, df = 1, P = 0.40) 
between stocked and unstocked reservoirs. 

Recruited channel catfish CV in mean CPUE ranged 238–
1228% (Table 1). The RVI was significantly positively correlated 
to the CV in mean CPUE for all reservoirs combined and stocked 
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Figure 2. Scatter plot showing the relationship between the recruitment variability index (RVI) and 
the recruitment coefficient of determination (RCD) for channel catfish populations from 15 central 
Oklahoma reservoirs. Spearman’s Rank Correlation results are shown.

Figure 3. Scatter plot showing the relationship between the recruitment variability index (RVI), 
recruitment coefficient of determination (RCD) and coefficient of variation (CV) in mean catch per unit 
effort of age classes used in the analysis for stocked, unstocked, and all reservoirs combined for chan-
nel catfish populations from 15 central Oklahoma reservoirs. Weighted regression results are shown.
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reservoirs, respectively when compared using weighted linear 
regression (all reservoirs r  2 = 0.32, P = 0.03; stocked reservoirs  
r  2 = 0.38, P = 0.08; Figure 3). The correlations between RVI and CV 
in mean CPUE for unstocked reservoirs, as well as RCD for all cat-
egories (all, stocked, and unstocked) were not significant (Figure 3). 

The strongest predictor of RVI from the candidate model set 
was longitude (Table 3). No other variables were within 2 ΔAICc of 
the top ranked model although Stocking Ratio, PSD-Q, and CPUE 
had more predictive potential than the intercept only model (i.e., 
the null model). All other predictors were suggested to have less 
predictive potential (based on AICc) than the intercept only mod-
el. Longitude appeared to have a positive linear relationship with 
RVI (Figure 4). 

Discussion
Similar to Isermann et al. (2002), our results demonstrate that 

RVI and RCD are positively correlated and comparably index 
channel catfish recruitment variability in most of the samples. 
However, when comparing RVI and RCD values empirically to the 
CV of mean CPUE of one-time samples, only RVI showed a sig-
nificant (although weak) positive correlation, indicating that RVI 
has utility for indexing recruitment variability in channel catfish 
from single sampling events. We were able to model stocking’s 
impact on recruitment stability by indexing stocked populations 
(i.e., significant positive correlation of RVI to CV in mean CPUE). 
Ostensibly, this has not yet been explored for channel catfish and 
we believe that this contributes to the fit and utility of using RVI 
to quantify recruitment from single samples of channel catfish. 
Channel catfish recruitment dynamics would be better informed 
from long-term sampling datasets and RVI and RCD would like-
ly benefit from validation against said data prior to implementa-
tion as assessment methods. For example, prior work on crappie 
spp. (Isermann et al. 2002) and walleye (Quist 2007) suggested 
that long-term datasets offer more reliable methods for validation 
assessment of recruitment variability. Still, as in our study, Quist 
(2007) showed a weak significant relation between RVI and CV in 
mean CPUE from a single sampling event. For managers dealing 
with time and budget constraints, infrequent sampling of the same 
population is common and one-time assessment of recruitment 
using RVI may be the only option available. While this study uti-
lized a small sample size of reservoirs compared to others of its 
kind (n = 15), we were still able to associate RVI to channel catfish 
recruitment variability and identify one potential predictor vari-
able (e.g., longitude). Building on our results, future work is need-
ed to expand the geographic scope (e.g., number of reservoirs) and 
number of annual samples per reservoir.
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Figure 4. The best predictive model (Longitude) from the candidate set for estimating channel 
catfish Recruitment Variability Index (RVI) values across 15 central Oklahoma reservoirs. The solid  
line indicates the mean prediction for relationship with the equation for deriving the mean included. 
Grey shading indicates 95% CIs for the relationship. Points represent observed values from  
study reservoirs. 

Table 3. Model selection table used to assess predictive potential of factors hypothesized to 
influence channel catfish recruitment variability for 15 Oklahoma populations. Predictors include 
longitude, number of years stocked vs number of age classes in the sample (Stocking ratio), 
proportional size distribution of fish ≥ quality size (PSD-Q), mean catch per unit effort (CPUE), 
no predictor (intercept only), mean total length at age-3 (Mean length), maximum total length 
observed (Max TL), maximum reservoir depth (Max depth), latitude, reservoir surface area (Surface 
area), and annual mortality (A). Also included is whether each predictor is a spatial, abiotic, or biotic 
factor. Coefficients of determination (r2), Akaike information criterion corrected for small sample 
size (AICc), change in AICc relative to the top ranked model (∆AICc), AICc weights (wi), and evidence 
rations (ER) are included for each model. 

Variable Factor r 2 AICc ΔAICc wi ER

Longitude Spatial 0.59 –15.31 0.00 0.88 1.00

Stocking ratio Biotic 0.41 –10.02 5.29 0.06 14.11

PSD-Q Biotic 0.32 –7.83 7.48 0.02 42.13

CPUE1 Biotic 0.31 –7.60 7.71 0.02 47.34

Intercept – – –5.19 10.12 0.01 157.50

Mean length Biotic 0.17 –4.73 10.58 <0.01 198.83

Max TL Biotic 0.08 –3.20 12.11 <0.01 426.94

Max depth Abiotic 0.06 –2.86 12.45 <0.01 504.51

Latitude Spatial 0.02 –2.38 12.94 <0.01 644.14

Surface area1 Abiotic <0.01 –2.04 13.27 <0.01 762.88

A 1 Biotic <0.01 –2.04 13.27 <0.01 763.06

1CPUE and surface area were log10 transformed for analysis; annual mortality A was reciprocal 
transformed.



2025 JSAFWA

A variety of factors could negatively contribute to the detection 
of variable recruitment including various spatial (e.g., longitude; 
this study), abiotic, and biotic factors. For example, any gear used 
with channel catfish has inherent sampling biases (e.g., tandem 
hoop nets do not accurately represent size structure for fish <250 
mm TL and mesh size directly impacts size structure estimates; 
Michaletz and Sullivan 2002, Columbo et al. 2008, Buckmeier 
and Schlechte 2009, Bodine et al. 2013). This can skew the repre-
sentation of certain age groups of fish and resulting age structure 
data, directly impacting detection of recruitment variability (Rick-
er 1975, Maceina 1997, Quist 2007). Associated sampling bias as 
well as varying environmental conditions (e.g., temperature, day 
length, turbidity) during the sampling period can negatively im-
pact recruitment-variability detection as well (Isermann et al. 
2002). Though RVI appears to be a useful tool to assess variation 
in channel catfish recruitment, managers should take these factors 
into account when applying it. 

Differential mortality among age classes (e.g., Quist 2007) may 
also negatively impact recruitment-variability detection as these 
indexing techniques assume that mortality does not differ between 
ages. When simulating consistent mortality across ages along with 
variable recruitment of crappie, Isermann et al. (2002) showed RVI 
and RCD sufficiently explained recruitment variability. It is pos-
sible that differential mortality among age classes of channel cat-
fish in this study contributed to the weak relation of RVI and lack 
of RCD correlation with CV in mean CPUE, respectively. Care 
should be taken when obtaining ages of channel catfish for RVI, 
considering that values can change drastically with the addition or 
subtraction of age classes (Isermann et al. 2002). Through simula-
tion modelling, Isermann et al. (2002) found RCD to have higher 
potential for indexing recruitment variability in populations with 
no missing age classes and high variability in catch at age, suggest-
ing RVI be applied to populations with failed age classes. Missing 
(i.e., failed) age classes were common in this study’s samples (53% 
had at least one missing age class), particularly in unstocked reser-
voirs, and likely contributed to the better application of RVI than 
RCD (Isermann et al. 2002). 

We hypothesize longitude had an impact on channel catfish 
recruitment, although not necessarily a direct one. In Oklahoma, 
precipitation increases with decreasing longitude, i.e., from west 
to east (Oklahoma Mesonet 2024). Although it is unknown at this 
point which variable is the driving factor in the relationship we 
observed given that spatial factors often have background contri-
bution of diverse abiotic drivers (e.g., geology, land use, annual 
precipitation; Brosset et al. 2020, Griffin et al. 2020), we hypoth-
esize that increased precipitation could contribute to stability in 
recruitment by providing more stable water levels through time. 

Though not as important, factors that had more predictive poten-
tial than the null model (i.e., stocking ratio, PSD-Q, and CPUE) 
should be examined in future work as the relationship of these 
factors to recruitment variability could directly inform managers 
about whether naturally reproducing populations have potential 
for increased growth (variable recruitment) or increased harvest 
potential (stable recruitment) and help determine whether stock-
ing is warranted. We also recognize that certain variables (i.e., in-
terspecific competition, variable harvest rates) may influence the 
ability to estimate RVI and future studies are required to deter-
mine the strength of these associations.

Specifically related to management implications, we see utility 
in using RVI as a ranking tool for single-sample data from multiple 
channel catfish populations within a region. The ranking process, 
along with other population rate functions (e.g., growth and mor-
tality), could provide managers with a quick method of identifying 
candidate reservoirs for habitat improvement efforts (e.g., spawn-
ing structure, nursery habitat). This method may also provide 
insight into the application of improvement efforts through the 
identification of systems that support self-sustaining populations 
to enable mimicking conditions from these self-sustaining systems 
in systems with insufficient recruitment. We also believe this has 
the potential to streamline the interaction between regional man-
agers and hatchery personnel and further inform decisions on the 
need to stock channel catfish, particularly in small impoundments. 
Still, we encourage managers to exercise caution when applying 
RVI due to the previously stated limitations and utilize long-term 
datasets to assess variability in recruitment when possible. 
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