
2024 JSAFWA

The Coastal Plain of the southeastern U.S. has gone through 
major changes due to landscape conversions to agricultural or 
working forests for timber production (Weigl et al. 1989, Edwards 
et al. 2003, Edwards and Laerm 2007). Where pine savannas re-
main, natural disturbance regimes (i.e., frequent growing-season 
fire) have been replaced by fire suppression or at best, infrequent 
dormant season burning. Reduction of reoccurring, growing 
season fires often result in woody encroachment, and therefore 
changes in species composition, including open savanna special-
ists being replaced by generalists (Moorman et al. 2000).

Gray squirrels (Sciurus carolinensis) and southern fox squirrels 
(S. niger niger) are sympatric tree squirrels that co-exist across 

much of the southeastern U.S. despite having overlapping habitat 
needs for ecological traits such as foraging and nesting (Edwards 
et al. 2003, McRobie et al. 2019). Both species utilize mast from 
oak (Quercus spp.), black walnut (Juglans nigra), hickory (Carya 
spp.), pine (Pinus spp.), and American beech (Fagus grandifolia; 
Koprowski 1994a, Koprowski 1995b, Edwards et al. 2003, Wilson 
et al. 2020, Moncrief et al. 2012). Both species also use mature 
hardwood trees for drey nests or cavities as denning substrate (Ko-
prowski 1994a, Koprowski 1995b, Edwards et al. 2003, Moncrief 
et al. 2012). However, across much of the southeastern U.S., fire 
suppression and forest mesophication have shifted forest struc-
ture and composition towards conditions that favor gray squirrels, 
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which have a broader usable niche space compared to southern 
fox squirrels (Whitaker and Hamilton 1998, Nowacki and Abrams 
2008, Sovie et al. 2020, Sovie et al. 2021). 

Gray and fox squirrels appear to niche partition to minimize 
interspecific competition. Gray squirrels largely occupy deciduous 
forests (Steele and Koprowski 2011, Parker and Nilon 2008, Benson 
2013, Sovie et al. 2021), whereas southern fox squirrels are more 
likely to occupy open pine savanna woodlands and pine-hardwood 
mixed forests (Steele and Koprowski 2011, Sovie et al. 2021). Gray 
squirrels and southern fox squirrels have also been known to show 
temporal partitioning across leaf-on and leaf-off seasons to mini-
mize competition (Sovie et al 2019). Even with somewhat different 
habitat niches, competition among the two species is evident, par-
ticularly in hardwood areas (Sovie et al. 2020, Sovie et al. 2021). 

We used two-species, single-season occupancy models to as-
sess the effect of forest condition (e.g., basal area, canopy height), 
prescribed burn treatment (i.e., number of burns since 2017, time 
since last burn), and cover type classifications on occupancy of 
southern fox squirrels given selection and potential competition 
with gray squirrels. We also estimated camera-trapping level-of- 
effort (LOE) for detecting southern fox squirrels in southeastern 
Virginia using a single-species occupancy model assessing time 
since last burn (yr) informed by two-species occupancy model-
ing. Further, we assessed how environmental variables including 
time of year, daily precipitation, and daily average temperature 
affect southern fox squirrel detection probabilities. We predicted 
that southern fox squirrel occupancy probability would be great-
est in recently burned areas of pine-hardwood mixed savanna in 
the absence of gray squirrels. We also predicted that fox squirrel 
detection would be negatively influenced by greater amounts of 
daily precipitation and extreme daily temperatures (high heat or 
freezing temperatures), as has been documented previously (Weigl 
et al. 1989).

Study Area
We conducted our study at the Virginia Army National Guard’s 

Maneuver Training Center Fort Barfoot and the Big Woods Wild-
life Management Area and Piney Grove Preserve Complex (BW-
PGC) managed by the Virginia Department of Wildlife Resources 
and the Nature Conservancy, respectively (Figure 1). Fort Barfoot 
(FB) is a 16,500-ha Virginia Army National Guard installation 
located in Nottoway, Dinwiddie, and Brunswick counties in the 
lower Piedmont province. The installation consists of a mixture 
of deciduous, pine, mixed pine-hardwood, and bottomland hard-
wood forests with open shrub and grassland areas throughout. 
Additionally, FB has a long history of fire-maintained disturbance 
(i.e., fire return intervals of 1–5 yr) over the past three decades 

that has helped maintain cover and structure approximating past 
natural conditions that are rare in the region (Kalen et al. 2014, 
Emrick et al. 2018). The BWPGC is in Sussex County in the up-
per Atlantic Coastal Plain and covers ~2100 ha. The cover types 
of this area are characterized by mixed loblolly pine (P. taeda) and 
shortleaf pine (P. echinata) stands, loblolly pine savannas, young 
longleaf (P. palustris) plantings, upland hardwoods, and bottom-
land hardwoods. Most of the complex, exclusive of the bottomland 
hardwoods, is managed with frequent fire (i.e., 2–3-yr fire return 
interval) to support populations of red-cockaded woodpecker 
(Dryobates borealis), northern bobwhite (Colinus virginianus), and 
eastern wild turkey (Meleagris gallopavo silvestris; Watts and Hard-
ing 2007). Since the early 2000s, burning has been used to manage 
red-cockaded woodpecker habitat. The BWPGC is one of the last 
remaining large, fire-maintained, mature pine savannas in south-
eastern Virginia (Bradshaw and Watts 2003).

Methods
Camera Surveys

We established trail camera survey points at FB and BWPGC to 
assess the presence of southern fox squirrels and gray squirrels fol-
lowing the methods of Tye et al. (2015), Greene et al. (2016), and 
Greene and McCleery (2017). Camera point selection was based 
on taking the boundary of the study areas, overlaying a systematic 
point grid, and then selecting random points that were evenly dis-
tributed among the main landcover types in ArcMap 10.8 (ERSI 

Figure 1. Southern fox squirrel (Sciurus niger niger) field sites, 2019–2022: Military Training Center 
Fort Barfoot, Nottoway County, Virginia (left) in the Piedmont region and the Virginia Department of 
Wildlife Resources’ Big Woods Wildlife Management Area and Nature Conservancy’s Piney Grove in 
Sussex County (right) in the Coastal Plain region. 
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Inc., Redlands, California). We stratified points using land cover 
as delineated by the National Land Cover Database, 2019 release 
(Dewitz and USGS 2022). Prior to final selection, we confirmed 
the presence of potential fox squirrel habitat through visual inspec-
tion against U.S. Department of Agriculture National Agriculture 
Imagery Program (NAIP) aerial imagery (2015, USDAFSA-APFO 
Aerial Photography Field Office, Salt Lake City, Utah) coupled 
with on-the-ground inspection, whereby points in unsuitable con-
ditions such as water and buildings were avoided. We considered 
potential habitat as landcover important to southern fox squirrels 
elsewhere in the Southeast such as pine savannas, upland mixed 
pine-hardwood stands, and upland hardwood/hardwood bottom-
lands (Edwards et al. 1989, Edwards et al. 2003, Prince et al. 2014, 
Prince et al. 2016). Finally, we selected nine transect locations con-
sisting of five cameras each based on the random points distribut-
ed in the potential southern fox squirrel habitat. We deployed trail 
cameras (Bushnell Trophy HD cameras, Bushnell Outdoor Prod-
ucts, Overland, Kansas) within the transects at approximately 250-
m intervals to ensure independence of sample locations, as well as 
independence between camera survey transects (Tye et al. 2015). 

Camera-trapping efforts at BWPGC were focused site’s primary 
cover types: mature upland loblolly pine savannas, loblolly pine/
hardwood forests, and bottomland hardwood-dominant riparian 
areas. At FB, we deployed camera transects in upland mixed lob-
lolly pine/hardwood forests and upland loblolly pine forests to sur-
vey for potential presence of southern fox squirrels and in mature 
upland hardwood forests and bottomland hardwood forests that 
possibly could be occupied by eastern fox squirrels (S. n. vulpi-
nus; Edwards et al. 1989, Edwards et al. 2003, Perkins and Conner 
2004, Prince et al. 2014, Prince et al. 2016). We differentiated Sci-
urid species or subspecies based on pelage and size (Edwards et al. 
2003, Edwards and Laerm 2007), although we note that the genetic 
foundation of fox squirrel sub-species categorization is question-
able (Moncrief et al. 2010). 

We deployed cameras from October 2019 to October 2020 on 
both BWPGC and FB. Due to equipment restraints, we deployed 
only three transects at a time for approximately 28 consecutive 
days. At the end of each 28-day rotation, we moved cameras to 
another grouping of three randomly chosen transect sites. We used 
three different rotations around the landscape for a total of nine 
randomly chosen transect locations. At each survey location, we 
placed a camera on the nearest tree to the assigned point 50–70 cm 
above the ground and pointed them at bait stations consisting of a 
nut and berry suet mixture. We used suet cakes as bait to increase 
capture potential (Curtis and Sullivan 2001, Edwards et al. 2003), 
placing bait stations no more than 10 m from the camera and 30–
70 cm from the ground attached to a tree (Boone et al. 2017). We 

then used DeerLab (2013, DeerLab, Inc. Jacksonville, Florida) to 
identify all observed mammals to species. 

Predictor Variables
We considered six habitat covariates for two-species occupan-

cy modeling (below): canopy cover, basal area, number of burns 
since 2017, time since last burn, canopy height, and general cov-
er type (savanna vs. other). We considered these six variables as 
they would be directly related to forest stratification and vegeta-
tion structure useful for further predictive efforts across the larger 
landscape (Hayes et al. 1981, Deuser et al. 1988). Time since last 
burn and number of burns is important as prescribed fire has been 
deemed an important management tool for fox squirrel habitat in 
other parts of their range (Conner et al. 1999). These data were col-
lected from land management records at both sites. Basal area and 
canopy cover (%) were collected in the field with a 10 basal area 
factor prism and concave spherical densiometer (Model-C, For-
estry Suppliers, Jackson, MS) (Lemmon 1957). Both variables were 
used to capture fine scale differences between hardwood dominant 
areas and pine dominant areas that might affect fox squirrel and 
gray squirrel site selection (Greene and McCleery 2017). Aver-
age canopy height was calculated using USGS 2014 LiDAR point 
clouds (VGIN 2016) and the package lidR (Roussel et al. 2020) in R 
(R Core Team 2022), as canopy height is positively correlated with 
fox squirrel presence (Conner and Godbois 2003). We then used 
a 50-m circular moving window analysis to find the focal mean 
of percent canopy height for all pixels across the landscape. The 
presence of savanna, also an important cover type for fox squirrels 
(Edwards et al. 2003), was considered as a covariate as BWPGC is 
mainly covered by loblolly pine woodland savannas. We reclassi-
fied landcover to savanna or not savanna by creating a supervised 
classification ensemble model from known areas of savanna on 
the landscape using a vegetation height layer (LANDFIRE 2022) 
and percent evergreen forest derived from the National Land Cov-
er Database, 2019 release (Dewitz and USGS, 2022). We then cut 
predictions based on a threshold that maximized sensitivity and 
specificity in relation to the training point classifications. 

Data Analysis 
We assessed the presence/absence of southern fox squirrels and 

eastern gray squirrels using occupancy analysis for both field sites. 
The sample interval reflected time between camera deployments 
(i.e., 28 days), with each day treated as a survey occasion. Our oc-
cupancy model sets included combinations of a forest cover mod-
el (canopy cover + basal area) as well as canopy cover and basal 
area separately, two fire frequency models (number of burns since 
2017, time since last burn), a canopy height model, and a general 
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cover type model (1 as savanna; 0 as other cover types). To account 
for collinearity among our covariates, we used the package usdm 
(Naimi 2017) in R, where any variables with r > 0.7 were com-
pared and the covariate with the least support was not included 
in our final analysis (Amspacher et al. 2019). We standardized all 
continuous variables (MacKenzie et al. 2006, Fiske and Chandler 
2011) and created dummy variables for categorical variables prior 
to analysis. We used single-season, two-species occupancy to spe-
cifically assess the associations and possible competition of south-
ern fox squirrels and gray squirrels. We then modeled survey effort 
using single-species occupancy and detection models informed by 
informative occupancy variables derived from two-species top 
modeling results.

We used the wiqid package in R (Meredith 2022) to assess inter-
actions of gray squirrels and fox squirrels utilizing single-season, 
two-species occupancy modeling. Two-species occupancy models 
estimate the probability of a subordinate species at a site, condi-
tional on the presence or absence of a dominant species. As our 
focus was on southern fox squirrel occupancy, and because gray 
squirrels have been documented to outcompete fox squirrels in 
closed canopy hardwood stands (Sovie et al 2020, 2021), we con-
sidered gray squirrels to be dominant and fox squirrels to be the 
subordinate species. 

We focused on parameterization that assessed 1) ψCa: the 
probability of fox squirrel occupancy in absence of gray squirrels;  
2) ψCA: the probability of fox squirrel occupancy in the presence 
of gray squirrels, and 3) ψA: the probability of gray squirrel oc-
cupancy. We concurrently assessed a priori models regarding the 
interactions of gray squirrels and southern fox squirrels when gray 
squirrels were absent (ψA:ψCa), and the interactions of gray squir-
rels and southern fox squirrels when gray squirrels are present 
(ψA:ψCA) for a total of 16 model interactions. Detection probably 
was modeled as constant (p[.]) for two-species occupancy mod-
eling. Using Akaike’s Information Criteria for small sample sizes 
(AICc), we considered models within 2 AICc units of the top mod-
els to be competing models (Burnham and Anderson 2002). Of 
the covariates in the top models, we considered covariates with 
95% CI not crossing zero to be significant predictors of occupancy 
(Shake et al. 2011, Bowling et al. 2014). 

We performed single-species modeling using the package wiqid 
in R (Meredith 2022) to test single-season, single-species occu-
pancy (ψ) and detection (p) for southern fox squirrels. To further 
inform land managers of southern fox squirrel survey efforts, we 
used results from occupancy modeling regarding time since last 
burn (yr) to examine LOE relationships. We used the formula pro-
vided by Wintle et al. (2012), 

n =
 log (1–α)–log (1–ψ)

where α is a desired confidence level, or range of theoretical prob-
abilities, ψ is occupancy, and p is detection probability, to estimate 
the total number of sequential non-detections (n) required to 
determine probable absence of southern fox squirrels. Detection 
covariates utilized in single-species occupancy models were max-
imum daily temperature (C), daily precipitation (mm), and Julian 
day standardized by year. Maximum daily temperature and daily 
precipitation were included in models because previous research 
has shown that fox squirrel activity is negatively correlated with 
these variables (Weigl et al. 1989, Ditgen et al. 2007). Weather data 
were retrieved from the National Oceanic and Atmospheric Ad-
ministration National Weather Station located in Wakefield, Vir-
ginia. Julian day was utilized on a 1–365 scale whereas (January 
1–December 31). The inclusion of Julian day as a covariate can 
provide insight into differing activity periods of fox squirrels, as 
activity peaks at different times of the year due to nesting, foraging, 
and caching activities (Edwards and Laerm 2007). 

Results
From our efforts on October 2019 to October 2020, we record-

ed 370 trap days per camera point for a total effort of 16,650 trap 
days across all cameras in each transect for a total of 45 camera 
points at both BWPGC and FB. Within our entire survey period, 
we identified fox squirrels at 13 (29%) of the 45 camera points at 
BWPGC. Based on pelage and live captures from a concurrent 
radio-tracking study, along with the forest condition and com-
position, all fox squirrels at BWPGC were presumably the south-
ern subspecies. Gray squirrels were identified at 17 (38%) of the  
45 camera sites at BWPGC. Both southern fox squirrels and gray 
squirrels were detected on all landcover types on BWPGC (pine 
savanna, hardwood bottomland, young, managed pine, and  
hardwood-pine mixes). However, southern fox squirrels were typi-
cally detected at points located in pine savannas and gray squirrels 
were identified at points located in hardwood bottomlands. South-
ern fox and gray squirrels overlapped at only 2 (4%) of the 45 cam-
era sites at BWPGC. At Fort Barfoot, we identified gray squirrels 
at 41 (91%) of the 45 camera sites. We did not detect either eastern 
or southern fox squirrels at FB over the study, therefore we limited 
occupancy and detection analyses for both species to BWPGC. 

In assessing interactions among single-season, two-species 
occupancy modeling, our top model explaining the interaction 
of southern fox squirrels and gray squirrels was the influence of 
time since the last burn (ψA:ψCa; Table 1). Gray squirrel occupan-
cy probability (ψA) increased the longer time persisted between 
burns (ψA βtime since last burn = 0.75, SE = 2.12). Moreover, in the ab-
sence of gray squirrels, southern fox squirrel occupancy proba-
bility (ψCa) decreased the longer time persisted between burns  
(ψCa βtime since last burn = –1.44, SE= 0.72; Figure 2). 

α ψ

log (1–p)
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We utilized the time since last burn covariate from our top, 
two-species occupancy model to inform LOE in surveying south-
ern fox squirrels. For southern fox squirrels, our null for detec-
tion (constant p) had the most support (p[intercept] β = –3.61, 
SE = 0.18; Table 2). Our informed single-season occupancy mod-
el revealed that southern fox squirrel occupancy decreased with 
more years since last burn (ψ[Time since last burn] β = –1.44, 
SE = 0.72; Table 2). Furthermore, we estimated that the necessary 
LOE for sequential non-detections of southern fox squirrels would 
be 42 days for 1 yr since last burn, and 7 days for ≥2 yr since the 
last burn (Figure 3).

Figure 2. Effect of time since last burn (yr) for eastern gray squirrel (Sciurus carolinensis) occupancy 
(ψA) and southern fox squirrel (Sciurus niger niger) occupancy when gray squirrels are absent (ψCa) 
at remote trail camera locations on the Virginia Department of Wildlife Resources’ Big Woods Wildlife 
Management Area and Nature Conservancy’s Piney Grove in Sussex County, Virginia, 2019–2020. 
Relationship between time since burn, gray squirrel occupancy, and southern fox squirrel occupancy 
when gray squirrels are absent from model ψA:ψCa (Time Since Burn), p(.). Dashed lines and solid 
black lines represent 95% confidence intervals for gray squirrels and fox squirrels, respectively. 

Figure 3. The total number of sequential non-detections required to determine the probable  
absence of southern fox squirrels (Sciurus niger niger) based on time since last burn (yr) and null 
detection, p(.) on the Virginia Department of Wildlife Resources’ Big Woods Wildlife Management 
Area and Nature Conservancy’s Piney Grove in Sussex County, Virginia, 2019–2020. 

Table 1. Southern fox squirrel (Sciurus niger niger) two-species occupancy (ψA:Cψ) models on 
the Virginia Department of Wildlife Resources’ Big Woods Wildlife Management Area and Nature 
Conservancy’s Piney Grove in Sussex County, Virginia, 2019–2020. Models considered as having 
strong empirical support at ΔAIC < 2.0 from the top model.

Modela AIC c ΔAIC c
Model 

Likelihood wi

ψA:ψCa (Time since last burn) 964.63 0.00 1.000 0.777

ψA:ψCA (Time since last burn) 968.07 3.44 0.179 0.139

ψA:ψCa (.) 971.56 6.93 0.031 0.024

ψA:ψCa (Forest Condition) 972.44 7.81 0.020 0.016

ψA:ψCa (Savanna + Canopy Height) 972.90 8.27 0.016 0.012

ψA:ψCA (Forest Condition) 972.92 8.29 0.016 0.012

ψA:ψCA (.) 973.75 9.12 0.010 0.008

ψA:ψCa (Forest Condition + Savanna) 973.98 9.35 0.009 0.007

ψA:ψCA (Canopy Cover + Canopy Height) 974.48 9.85 0.007 0.006

ψA:ψCA (Forest Condition + Savanna) 975.23 10.61 0.005 0.004

ψA:ψCa (Canopy Cover + Canopy Height) 975.59 10.96 0.004 0.003

ψA:ψCa (Canopy Height) 975.69 11.06 0.004 0.003

ψA:ψCA (Savanna + Canopy Height) 976.12 11.49 0.003 0.002

ψA:ψCA (Canopy Height) 976.21 11.58 0.003 0.002

ψA:ψCa (Basal Area + Canopy Height) 977.77 13.14 0.001 0.001

ψA:ψCA (Basal Area + Canopy Height) 979.26 14.63 0.001 0.001

a. Detection modeled as p(.) in each model.

Table 2. Southern fox squirrel (Sciurus niger niger) single-species occupancy (ψ) and detection (p) 
models on the Virginia Department of Wildlife Resources’ Big Woods Wildlife Management Area and 
Nature Conservancy’s Piney Grove in Sussex County, Virginia, 2019–2020. Models considered as having 
strong empirical support at ΔAIC < 2.0 from the top model. Significant variables denoted by *. 

Model AIC c ΔAIC c LogLik wi

ψ (Time since last burn)*, p (.) 395.6 0.00 –194.5 0.48

ψ (Time since last burn)*, p (Julian day) 396.2 0.63 –193.6 0.35

ψ (Time since last burn)*, p (Precipitation) 397.8 2.16 –194.4 0.16

ψ (Time since last burn), p (Julian day + Precipitation) 422.7 27.11 –205.6 0.00

ψ (Time since last burn), p (Temperature + Precipitation + 
Julian day)

422.7 27.13 –204.2 0.00

ψ (Time since last burn), p (Julian day + Temperature) 428.0 32.38 –208.2 0.00

ψ (Time since last burn), p (Precipitation + Temperature) 428.9 33.34 –208.7 0.00

ψ (Time since last burn), p (Temperature) 453.2 57.60 –222.1 0.00
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Discussion
Our results documenting southern fox squirrel and gray squirrel 

occupancy interactions indicate that, like elsewhere in the South-
east, fox squirrel occupancy increases with shorter prescribed fire 
rotational periods, particularly in the absence of gray squirrels 
(Parker and Nilon 2008, Steele and Koprowski 2011, Benson 2013, 
Sovie et al. 2021). Burned areas at BWPGC included pine savan-
nas/woodlands, pine/hardwood forests, and the edges of bottom-
land hardwood. Gray squirrels more often inhabit areas of closed 
canopies that are characterized by hardwood dominant areas, par-
ticularly bottomlands, whereas southern fox squirrels only did so 
in the absence of gray squirrels (Gilliam and Platt 1999, Sovie et al. 
2021). However, our top, two-species occupancy model indicated 
that southern fox squirrels occurred in frequently burned areas re-
gardless of cover type as well as areas without gray squirrels. Our 
cover type classification for occupancy analysis was a binary scale 
(pine savanna vs. other cover type), where other cover types in-
cluded hardwood bottomlands and hardwood/pine mixed stands. 
This suggests that fox squirrels responded to fire-maintained forest 
structure but also to potential competition with gray squirrels. 

Interactions between two species is likely partly due to Interfer-
ence competition, as gray squirrels are more aggressive and tend 
to discourage fox squirrels from areas of use (Wauters and Gurnell 
2002, Sovie et al. 2021). Additionally, there could be an element 
of exploitative competition. Hardwoods in the upland system at 
BWPGC were limited in extent, and gray squirrels readily utilized 
most of the available hardwood patches and bottomlands that 
would be available to southern fox squirrels. However, parsing out 
these mechanistic aspects of competition at our study areas would 
require additional research. 

Our analysis of southern fox squirrel detectability revealed that 
neither Julian day, average daily temperature, nor precipitation 
influenced detection probability In other areas of the Southeast, 
Ditgen et al. (2007) documented low squirrel activity in the hottest 
times of the year, while Pynne et al. (2020) detected no significant 
changes in squirrel activity based on average daily temperatures 
or precipitation, as we observed. Geographically, temperature ex-
tremes vary and may drive the activity of the subspecies differently 
among regions (Brown and Yeager 1945, Bakken 1959), as well as 
the temporal partitioning between gray squirrels and southern fox 
squirrels (Sovie et al. 2019), and seasonal activity shifts (Weigl et 
al. 1989, Edwards et al. 2003). Therefore, depending on the objec-
tive, the activity of fox squirrels can be driven by environmental 
variables as well as variables related to the ecology of the squirrel 
itself. To counteract any potential, yet poorly known, effects of en-
vironmental variables on detection probabilities, managers should 

utilize multi-day surveys throughout multiple seasons to account 
for any possible variation (Pynne et al. 2020). 

Camera trapping efforts confirmed that, despite the presence 
of putative habitat, the probability of occurrence for southern fox 
squirrels at BWPGC is low to moderate, and therefore likely low 
to moderate densities, similar to current observations across much 
of the Southeast (Weigl et al. 1989, Loeb and Moncrief 1993, Ed-
wards and Laerm 2007). Also, no fox squirrel subspecies was ob-
served at FB despite anecdotal accounts of presence. Because our 
camera-trapping sessions exceeded the necessary LOE duration at 
most cameras at BWPGC and FB, we have high confidence that 
there are no established populations of fox squirrels of both sub-
species at FB presently, though we note much of this large instal-
lation has yet to be surveyed. Our results from BWPGC suggest at 
least 7 camera-trapping days are required to determine probable 
absence of southern fox squirrels in stands burned at least 2 yr 
prior. Unfortunately, necessary effort greatly increases on newly 
burned sites as conditions immediately post-fire might not be con-
ducive to fox squirrel detection at BWPGC, or detection decreas-
es due to increases in home range as newly burned sites provide 
more available areas of use. Deeley et al. (2021) noted that maxi-
mizing the number of survey points rather than survey duration is 
often most optimal, assuming some broad understanding of level 
of effort needed. Accordingly, in southeastern Virginia, managers 
probably could survey with confidence for less than our 28-day pe-
riods at any given site thereby allowing more sites to be surveyed.

Our lack of detections of fox squirrels at FB may suggest that 
the lower Piedmont of Virginia has not yet been colonized from 
the Blue Ridge Mountains to the east or from the Coastal Plain. 
Fox squirrels that appear to be a southeastern subspecies are pres-
ent at BWPGC, but much of the surrounding landscape is likely 
of marginal quality (i.e., intensive agriculture, dense working pine 
forests), hence populations therein may be somewhat isolated. Ad-
ditional surveys are warranted in the Coastal Plain of Virginia to 
better define the regional distribution of fox squirrels.

We also found that southern fox squirrels use hardwood-pine 
mixed ecotones in the absence of gray squirrels. Therefore, for 
managers attempting vegetative restoration to improve habitat 
quality for fox squirrels, habitat is best achieved with short fire 
return intervals (i.e., 1–2 yr) that create these open canopy condi-
tions and decrease excessive hardwood encroachment (or practices 
that mimic these conditions). Additionally, increasing hardwood 
sources in dispersed, small patches within mature pine savannas 
coupled with fire might benefit fox squirrels without overly ben-
efiting gray squirrels. For managers interested in efficiently doc-
umenting the presence of southern fox squirrels in southeastern 
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Virginia, we suggest prioritizing initial camera surveys in forests 
with short fire return intervals where our findings suggest detec-
tion probability is high and necessary LOE is lower. 
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