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Migratory waterfowl spend 7–9 months in migration and win-
tering areas where habitat resource management activities focus 
on production of natural and agricultural food to support energet-
ic needs (Nelms et al. 2007). Many conservation planners in these 
regions use bioenergetic models as planning tools based on some 
evidence for cross-seasonal effects (Sedinger and Alisauskas 2014, 
Osnas et al. 2016). Some agencies also use bioenergetic models 
to set objectives for land management tracts (e.g., U.S. Fish and 
Wildlife Service [USFWS] National Wildlife Refuges; Hagy et al. 
2021b) and to help quantify contributions to the North American 
Waterfowl Management Plan (NAWMP; USFWS and CWS 1986, 
Williams et al. 2014, USFWS and CWS 2018). The NAWMP estab-
lished Migratory Bird Joint Ventures (JV) in 1986 which are co-
operative, regional, public-private partnerships that work to con-
serve migratory bird habitat (USFWS and CWS 1986, 2018). Many 
JVs located within non-breeding season geographies step-down 

continental waterfowl population objectives to their respective 
regions and use bioenergetic models to translate regional popu-
lation goals into foraging habitat objectives (Wilson and Esslinger 
2002, Lower Mississippi Valley JV [LMVJV] 2015). Provision of 
high-energy foraging resources for migrating and wintering wa-
terfowl are critically important to meeting habitat objectives in 
many geographies (LMVJV 2015, Brasher et al. 2018, Hagy et al. 
2021b).

Rice (Oryza sativa) is a major agricultural commodity and crit-
ical food resource for wintering waterfowl in the Mississippi Fly-
way, Texas Gulf Coast, and California’s Central Valley (Petrie et 
al. 2014, LMVJV 2015, Marty et al. 2015). Indeed, over 800,000 
ha–1 are cultivated in rice throughout the Mississippi Alluvial Val-
ley (MAV), >200,000 ha–1 in the Gulf Coast Prairies of Louisiana 
and Texas, and >200,000 ha–1 in California’s Central Valley annu-
ally (Petrie et al. 2014). Waste-grain and unharvested rice seeds 
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account for approximately 12% of the estimated wintering wet-
land forage needed to support target waterfowl population objec-
tives within the LMVJV and 42% within the Gulf Coast JV region 
(Petrie et al. 2014). However, more efficient farming techniques 
and earlier planting and harvest dates continue to reduce waste-
grain rice available for waterfowl (Manley et al. 2004, Stafford et 
al. 2006). State, federal, and private land managers increasingly 
cultivate rice and leave it unharvested and flooded to efficiently 
meet habitat resource management goals (LMVJV 2015). Unhar-
vested rice can provide 45 times greater energy biomass compared 
to harvested rice (Hagy et al. 2021a). Given the importance of 
unharvested rice to waterfowl and its increasing use by waterfowl 
and wetland managers, accurate biomass estimates are needed to 
parameterize bioenergetic models for conservation planning and 
implementation (Petrie et al. 2014, Williams et al. 2014, Marty et 
al 2015, Hagy et al. 2021b).

Biomass of harvested rice historically has been estimated using 
soil cores (Manley et al. 2004, Stafford et al. 2005, Havens et al. 
2009, Marty et al. 2015). In unharvested fields, harvested samples 
known as crop-cuts have been used (Fermont and Benson 2011, 
Sapkota et al. 2016). However, both soil cores and crop-cuts are 
labor intense and typically cost-prohibitive for operational mon-
itoring (Low and Bellrose 1944, Gray et al. 1999, Sapkota et al. 
2016). Therefore, our goal was to design a rapid assessment meth-
odology based on visual assessments of rice density and quality 
with acceptable levels of precision (coefficient of variation [CV] =  
15–20%; Stafford et al. 2006). Specifically, we sought to: (1) quan-
tify precision and accuracy of multiple methods to estimate rice 
seed production within the Mississippi Alluvial Valley; (2) assess 
speed, bias, and precision trade-offs among different rapid assess-
ment variants; (3) evaluate unharvested rice yields relative to total 
input costs and fertilizer and herbicide applications; and (4) rec-
ommend the most appropriate rapid assessment method(s) and 
optimal input costs, nutrient, and chemical applications to wetland 
biologists and managers.

Study Area
Our study fields were located in two states within the MAV 

at three USFWS National Wildlife Refuges (NWR) and one Ten-
nessee Wildlife Resource Agency (TWRA) refuge. Specifically, 
fields were in Overflow NWR (N 34.3575, W 91.1211) and Dale 
Bumpers White River NWR (N 33.0791, W 91.6664) in Arkan-
sas, and Hatchie NWR (N 35.4983, W 89.2631) and Hop-in Ref-
uge (N 36.2511, W 88.9709) in Tennessee. Unharvested rice fields 
were bounded by levees and infrastructure for hydrological man-
agement within each impoundment to control weeds during the 
growing season and capture or flood impoundments during the 

non-growing season. Unharvested rice fields were planted with 
a seed drill or broadcaster during summer (i.e., May–July) after 
fields were brought to adequate nutrient and pH levels. After ger-
mination, shallow intermediate flooding schedules and sometimes 
herbicides were used to control weeds. Concurrently, some fields 
had post-planting fertilizers applied, typically in the form of urea, 
to provide nitrogen. Some years insecticide applications were also 
required to prevent crop destruction (Hardke 2021). 

Methods
Field Sampling of Rapid Methods 

We sampled unharvested rice in October 2020–2022 within 
a 1-m2 quadrat among five locations along a systematic random 
transect spanning an entire rice field to capture any heterogeneity 
of rice production within each field (Martin et al. 2022, Highway 
2022). We entered each field at a random location and placed our 
first quadrat 10–50 m from the field edge to establish our first sam-
pling location (Sapkota et al. 2016). The four subsequent sample 
locations were spaced evenly along the transect to encompass the 
entire field using a systematic-random design (Martin et al. 2022, 
Highway 2022). If rice levees were present and dividing the field 
into sections, we used multiple transects to distribute plots across 
different paddies within each field. At each sample location, we 
used the following methods described below to estimate rice seed 
production (Figure 1).

We developed a qualitative visual index (VI) to estimate seed 
production based on ocular seed-head size and density scores. We 
estimated seed-head size and density scores on a 1 to 10 scale with-
in each 1-m2 quadrat where 1 represented the lowest score and 10 
the highest, for a total possible score of 20. Lower scores of 1–4  
indicated low quality, potentially dirty (mixed with moist-soil 
plants) or ratoon rice, while high scores, such as 8–10, were near 
commercial rice production grade. We conducted VI scoring at each 
sampling location preceding all other rapid assessment methods. 

Following the VI method, we randomly collected five seed 
heads from each quadrat. Next, we divided the quadrat into four, 
0.25-m2 subplots. We randomly selected one of the four subplots 
and counted all stems within that subplot (0.25 m2; StemcountA). 
Then we counted all stems in the remaining subplots collectively 
(0.75 m2; StemcountB). We summed stem counts of the one and 
three quarter subplot samples for the total number of stems with-
in the entire 1-m2 plot (StemcountC). Following stem counts, we 
sequentially hand-harvested all seed heads from the randomly 
selected subplot first (0.25 m2; OneQuarterCC), followed by har-
vesting all seed heads from the remaining three quarter subplots  
(0.75 m2; ThreeQuarterCC). We stored all seeds in separate paper 
bags for each sampling method to allow them to dry.
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Laboratory Methods  
All seed heads were air dried at room temperature in paper bags 

for ≥1 wk, then thrashed from their panicles leaving only the seeds, 
and weighed to the nearest 0.1 g (Sapkota et al. 2016). For the crop-
cut methods, we used a mechanical seed thrasher in 2020 and 2021 
and hand thrashed samples in 2022. All seed heads collected for 
the stem count methods were hand thrashed. For each individ-
ual sample, we randomly selected 20 dried seeds and recorded 
the number of blank seeds to develop a correction factor for the 
number of blank seeds in each sample so we did not overestimate 
rice yield. Blank seeds are caused by sterile florets that do not pro-
duce a functional seed and are primarily the hull. The prevalence 
of blank seeds can be affected by rice variety, planting dates, soil 

temperature, irrigation before seed heading, excessive fertilization, 
and irrigation using cold water (Board and Peterson 1980). After 
samples were weighed, we combined biomass estimates from the 
0.25-m2 subplot and the 0.75-m2 subplot to calculate seed biomass 
(g [dry]) across the entire quadrat (WholeCC). The WholeCC 
biomass was assumed to be the true biomass for each quadrat on 
which we compared rapid assessment methods.

To correct for sampling loss, processing loss, and blank seeds, we 
calculated correction factors to adjust our measured weight. First, 
we assumed a 3% loss of seed weight during sampling, collecting, 
sorting, and weighing of all samples regardless of method based 
on Hagy et al. (2011). Next, we collected samples of seeds lost (i.e., 
discarded by the mechanical thrasher) during the thrashing of the 

Figure 1. During October 2020, 2021, and 2022, we sampled unharvested rice grown for migrating and wintering waterfowl in the Mississippi Alluvial Valley to evaluate a series of rapid assessment methods 
that estimated rice seed yield. This is a graphical interpretation of rapid assessment methodologies created with Biorender.com demonstrating rice seed sampling using a visual assessment of the entire 1-m2 

plot, stem count methods, and crop-cut methods.
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crop-cut samples (OneQuaterCC, ThreeQuarterCC, WholeCC). 
The stem count samples were hand thrashed in such small batch-
es no seeds were lost. Thus, no thrashing correction factors were 
needed. Then, we randomly selected and weighed 50 blank and 
50 whole seeds to the nearest 0.1 g and calculated mean weights 
which gave us a factor to adjust mass based on the number of blank 
seeds in each sample. Last, to account for excess weight from chaff 
(rice plant stems or parts of seed heads that are not actual grains), 
we collected eight samples of seeds after they were thrashed and 
weighed them before and after a thorough cleaning. Adjusting our 
measured weights accordingly with these corrections, we could 
then extrapolate rice seed density (kg ha–1). We gathered informa-
tion about agricultural practices and financial costs regarding rice 
cultivation for each field from state and federal wetland managers. 
Specifically, we collected total input cost, fertilizer rates (kg ha–1), 
and number of herbicide applications (1–2+). 

Statistical Analysis
The WholeCC (1 m2) represented true seed biomass (kg ha–1). 

Therefore, we compared estimated rice yield derived from rapid 
methods to the WholeCC (Sapkota et al. 2016). We first applied our 
correction factors at the subplot-level and then extrapolated sub-
plot samples to estimate rice seed biomass (kg ha–1). For the stem 
count methods, we calculated average weight of the five randomly 
selected seed heads from each quadrat and multiplied mean weight 
by the stem density (g m–2) and converted estimates to kg ha–1. 

We estimated rice yield for the VI by regressing WholeCC 
biomass (i.e., true biomass [kg ha–1]) on our VI Total scores (i.e., 
whole-plot estimate (kg ha–1; Naylor et al. 2005). We calculated ad-
justed marginal coefficient of determination (R2

adj ) to estimate vari-
ance in total biomass explained by the visual estimation method. 
We calculated 95% confidence (CI) and prediction intervals (PI) 
because both estimates of variance may be of interest to conser-
vation planners and biologists. Confidence intervals are most use-
ful to conservation planners to predict average seed yield across 
many rice fields in a landscape; PIs may be more useful to biologists 
measuring variance of predictions within single units (Naylor et 
al. 2005). Last, we compared mean precision and bias across each 
method. We used ANOVA to compare rapid yield estimation meth-
ods to our WholeCC method and set α = 0.1 (Tacha et al. 1982). 
Non-significant results would indicate no detectable difference in 
yield estimation and thus a more efficient and comparable meth-
od. Additionally, we estimated the bias for each method assuming 
WholeCC estimates represented true biomass (i.e., Bias = [method 
estimate – WholeCC estimate] ÷ WholeCC estimate) and com-
pared bias among methods with linear regression. All statistical 
analyses were performed in program R (R Core Team 2022).

We evaluated rice yield relative to financial input costs and ag-
ricultural practices. First, we assumed US$222 ha–1 for irrigation 
costs when these costs were unavailable (MSU 2021). We used a 
logarithmic regression to assess how yield from our WholeCC bio-
mass related to input cost (i.e., WholeCC (kg ha–1) regressed on 
log (input cost [$] ha–1). We calculated adjusted marginal coeffi-
cient of determination (R2

adj ) to estimate variance in total biomass 
explained by the input cost and calculated 95% CI. For fertilizer 
rates, we standardized nitrogen applications (kg ha–1) among fields 
post-planting by calculating kg ha–1 based on the known percent-
age of nitrogen in urea and ammonium sulfate. We separated these 
fields based on natural breaks in nitrogen applications into <50, 
50–100, 125–155, 155–180 and >180 kg ha–1 groups (n = 3, 3, 3, 
6, 1 respectively). We also evaluated the number of herbicide ap-
plications and grouped fields into 0, 1, or 2 applications. We then 
calculated mean and SE of rice yield relative to fertilizer rate and 
application.

Results
Yield Estimates and Comparisons

Blank seeds weighed 16.67% of whole seeds. Thus, we deflated 
seed mass by multiplying the percentage of blanks in each sam-
ple by 0.1667. We found the mechanical thrasher expelled 2.1% 
and 15.7% of whole seeds in 2020 and 2021, respectively. Hand- 
thrashing in 2022 expelled only 0.2% of whole seeds when thrashing 
crop-cut samples. We inflated seed yield by expelled seed-thrashing 
correction factors annually and only to crop-cut estimates because 
of their greater sample sizes. Last, we found that chaff created a 
0.74% bias and thus corrected for this effect.

Yield estimates among all methods, years, and fields ranged 
from 1200–15,036 kg ha–1 (SE = 0.0–3584; 23–298 bu ac–1). Within 
each year, rice yield averaged 5757 kg ha–1 (SE = 1320; 114 bu ac–1) 
in 2020, 5520 kg ha–1 (SE = 838; 109 bu ac–1) in 2021, and 6360 kg 
ha–1 (SE = 1325; 126 bu ac–1) in 2022 (Table 1). Our visual index ex-
plained 80% of the variation in total rice seed biomass (R2

adj = 0.80;  
Figure 2). In addition, the visual index only overestimated true 
yield by 1.2% (P = 0.858). We found differences in yield esti-
mates among rapid assessment methods (F6,105 = 1.90, P = 0.087;  
Figure 3). The stem count methods overestimated rice production 
by 29% using StemcountA (P = 0.006), 37% using StemcountB  
(P < 0.001), and 34% using StemCountC (P = 0.001; Figure 3); 
whereas, crop cuts did not (QuarterCC, P = 0.784; ThreeQuaterCC, 
P = 0.897). Lastly, each method yielded similar precision of mean 
CVs ranging from 24.7–35.0% across all five methods. The VI had 
the greatest precision (CV = 24.7%; Figures 2 and 3).
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Agricultural Practices
In general, input cost was positively corelated to yield (95% CI: 

2729.5–5540.4) explaining 74% of the variation in total rice seed 
biomass (R2

adj = 0.74, F1,13 = 40.4, P < 0.001; Figure 4). Managers 
that applied <50 kg ha–1 post-planting nitrogen fertilizer yielded 
2579 (SE = 496) kg ha–1 of rice seed. However, levels greater than 
180 kg ha–1 (i.e., 432 kg ha–1) of post-planting nitrogen yielded 

Table 1. Yield in both kilograms per hectare (kg ha–1, with SE) and bushels per acre (bu ac–1) of fields sampled with unharvested rice grown for wintering waterfowl to evaluate methods to estimate rice yield 
on four refuges in Arkansas (Overflow National Wildlife Refuge [NWR] and Dale Bumpers White River [DBWR] NWR) and Tennessee (Hatchie NWR and Hop-in Refuge [state refuge]), 2020–2022.

2020 Yield 2021 Yield 2022 Yield

Refuge Field kg ha–1 SE bu ac–1 kg ha–1 SE bu ac–1  kg ha–1 SE bu ac–1

Overflow
NWR

Jackson 3171.2 1115.1 62.9

Middle Long 1592.6 320.8 31.6 4722.1 260.4 93.6

North Long 2972.0 205.9 101.9 5141.1 335.8 101.9

North Flat Slough 4420.1 781.5 87.6

DBWR
NWR

Powerline 6872.9 289.6 136.3

Simmons 40 8306.9 428.8 164.7 8510.1 762.0 168.7 9657.8 451.6 191.5

Simmons 11 6572.8 989.1 130.3

Turner East 9141.4 536.8 181.2  

Turner North 7817.7 328.1 155.0

Hatchie NWR Triangle 3456.7 627.1 68.5

Hop-in 
Refuge

North 4460.2 639.0 88.4

South 4747.1 844.1 94.1

Figure 2. Linear relationship and associated 95% confidence (gray shade) and prediction intervals 
(dashed lines) between unharvested rice yield estimates (kg ha–1) from whole-plot crop-cuts (i.e., 
true biomass) and estimated Visual Index Scores (seed density + quality indexed from 1–10 for each 
metric) from fields in the Mississippi Alluvial Valley, October 2020, 2021, and 2022. Black dots are 
individual data points collected across 16 rice fields.

Figure 3. Comparison of unharvested rice yield (kg ha–1) in 2020, 2021, and 2022 for each rapid  
assessment method conducted on 16 fields in the Mississippi Alluvial Valley. Sampled include  
included 1-m2 whole plot crop-cut (WholeCC), visual index (VI), 0.25-m2 quarter plot crop-cut  
(OneQuarterCC), 0.75-m2 crop-cut (ThreeQuarterCC), stem count method with quarter plot stem 
counts (0.25 m2; StemCountA), three-quarter plot stem counts (0.75 m2; StemCountB), and whole 
plot stem counts (1 m2; StemCountC). Error bars are ± 1 SE.

similar production of 3457 kg ha–1. Other than one field, greater 
amounts of post-planting fertilizer increased rice seed production. 
Managers that applied 50–100 kg ha–1 of post-plant nitrogen fertil-
izer produced 4761 (SE = 209) kg ha–1 of rice on average compared 
to applications of 125–155 kg ha–1 producing 5675 (SE = 1075) kg 
ha–1 and applications of 155–180 kg ha–1 producing 8177 (SE = 501) 
kg ha–1 of rice. Similarly, as managers increased the number of 
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herbicide applications, their yields also increased. Mangers that 
applied no herbicide produced the least yield at 2579 (SE = 496)  
kg ha–1. Subsequently, managers that applied one herbicide applica-
tion produced 5978 (SE = 646) kg ha–1, and managers that applied 
two herbicide applications produced the greatest yields averaging 
8016 (SE = 896) kg ha–1.

Discussion
Given the importance of unharvested rice to waterfowl and its 

increasing use by waterfowl and wetland managers, we evaluated 
rapid assessment methods to estimate rice seed production to as-
sess trade-offs among estimated accuracy, precision, and speed. 
Our visual index and smaller crop-cut size estimates were gener-
ally similar to inaugural whole-plot crop-cut estimates. While we 
did observe high levels of variability in some instances, we believe 
much of this was due to the variability of production within our 
sampled fields, especially when yields were low. The time saved 
using our visual index cannot be understated when compared to 
crop-cuts and stem count methods. No physical samples are re-
quired, which greatly increased in-field efficiency and eliminated 
post-processing. Combined with minimal calculations and an au-
tomated data processing application, we demonstrated accurate 
yield estimates can be obtained before even leaving the field.  

We found no trade-off in precision vs. bias across crop-cut plot 
sizes, suggesting managers can use subsampled 0.25-m2 crop-cuts 
and obtain similar yield estimates, thus increasing harvesting and 

post-processing efficiency. We acknowledge, however, that crop-
cuts required mechanical seed-thrashing (which expelled >10% 
of whole seeds) or large amounts of time for hand thrashing. We 
believe that the large amounts of seed expelled during mechani-
cal thrashing was a result of different seed weights due to drying 
times. We strongly advise managers using mechanical thrashers 
to dry rice seeds for at least 1 wk first and then use our correction 
factor for seed loss from 2020.  

The stem count method overestimated rice yield compared to 
the whole-plot crop-cut. Five seed heads may also not be a large 
enough sample to precisely estimate seed mass compared to av-
erage mass across the entire plot. Sapkota et al. (2016) showed the 
use of smaller sample sizes when using crop-cuts could lead to 
the overestimation of wheat yield. Conversely, observer bias may 
have been injected when selecting random seed heads and thus 
unknowingly but consistently larger or heavier seed heads were 
selected compared to the plot average. Similar observer biases have 
been demonstrated with moist-soil vegetation rapid assessment 
methods (Martin et al. 2022). Therefore, we do not recommend 
the stem count method or its variants because of overestimation 
properties which could result in positive bias of foraging energetic 
carrying capacities.

Importantly, the visual index method required no harvesting 
or post-processing and estimated rice yield most precisely and ac-
curately. This visual estimation method required 20–40 min per 
field and explained 80% of variation in rice production. Therefore, 
we recommend the visual index scoring system to be used over 
all other methods. We acknowledge our regresion model predicts 
negative rice yields at low index scores, similar to moist-soil rapid 
assessment methods (e.g., Martin et al. 2022); yet, negative yields 
are impossible. Therefore, we suggest any negative yields be treated 
as zeros. One drawback to the visual index is observers must be 
familiar with the variability of rice growth, seed sizes, and densities 
in their region to accurately assign visual quality scores. Therefore, 
similarly encouraged by researchers developing moist-soil rapid 
assessment methods, we suggest annual training on rice variability 
and scoring to standardize estimates regionally (Naylor et al. 2005, 
Martin et al. 2022). We also advocate for the fewest number of ob-
servers across fields with established sampling protocols to reduce 
likely observer biases. Last, we recommend using applications that 
build in examples for observers paired with application-based data 
management and analysis. 

In rice fields with predictably high yield and low variation, seed 
density and size scores could be reasonably estimated at the field 
level by traversing randomized transects encompassing the entire 
variability of a field. Exploring this relationship, regressing yield 
and infield variation, we found that yields exceeding 297 kg ha–1 

Figure 4. Logarithmic regression of the estimated unharvested rice yield (kg ha–1) on the associated 
input cost (US$ ha–1; estimated based on information from field managers) with the 95% CI (gray 
shade) for 16 fields in the Mississippi Alluvial Valley, October 2020, 2021, and 2022. 
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(120 bu ac–1) had a CV < 20%. Thus, yields exceeding this threshold 
will appear homogeneous to observers and could be sampled with 
a single transect. This will increase the efficiency of the method 
with little to no effect on yield estimates. Similar variations to Nay-
lor et al. (2005) to estimate moist-soil seed production have been 
used successfully thereby significantly reducing time in the field 
(Martin et al. 2022). Conversely, if in-field variation is high, estab-
lished plots are likely necessary to obtain precise yield estimates. 

Unsurprisingly, generally greater input costs produce greater 
rice yield (MSU 2021); however, there appears to be a threshold at 
which input costs will be at a diminishing rate of return. In other 
words, managers can expect a greater yield with higher input cost, 
but at a lower rate of return as the yield per additional cost decreas-
es. Based on total input cost (seed, contracted services, fertilizer, 
herbicide, insecticide, and irrigation) for each field, we determined 
an optimal cost range and recommended managers target $865–
1235 ha–1 ($350–500 ac–1; MSU 2021). Once a field has reached ad-
equate pre-planting conditions, greatest benefits of post-planting  
nitrogen inputs appeared around 125 kg ha–1 (112 lbs ac–1) and 
benefits diminished when inputs exceeded 180 kg ha–1 (160 lbs  
ac–1). Lastly, herbicide applications always increased yield, so at 
least one application is prudent to limit weed competition that can 
dramatically reduce yield. Federal and state lands are generally lo-
cated on marginal to low soil production capacity from an agri-
cultural standpoint; thus, providing adequate growing conditions 
through fertilization and controlling herbaceous competition is 
necessary if greater than marginal yields are to be expected.

Management Implications
From our evaluation of agricultural inputs and yields, we have 

identified several key practices to maximize production efficiency. 
Our visual index score is a cost-effective and time-efficient method 
to estimate unharvested rice yield accurately and precisely. Public 
and private land managers are constrained by time and personnel; 
therefore, our method promotes the monitoring of rice yields at 
local and landscape scales because it is accurate, efficient, and thus 
not burdensome on wetland biologists and managers. Effectively 
and efficiently monitoring yields in these energy-rich croplands 
will accomplish two goals: (1) provide wetland managers with 
needed monitoring so they may adapt annual agricultural prac-
tices to increase rice yield while reducing input costs (Rains and 
Thomas 2009); and (2) allow conservation planners to most accu-
rately step-down NAWMP habitat resource goals to inform wet-
land management at the JV, regional, and wetland complex scales 
(LMVJV 2015, Hagy et al. 2021a).
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