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Monitoring of population trends is an important component 
of conserving imperiled species. Estimates of population trends 
provide vital information for determining population viability 
and conservation status (O’Grady et al. 2004) and are important 
components of most conservation status rubrics, including the 
ones used by the International Union for the Conservation of 
Nature (IUCN 2022) and NatureServe (Master et al. 2012). Spe-
cies monitoring often involves comparing changes in abundance 
over time. However, determining abundance for numerous spe-
cies is usually considered cost prohibitive (Noon et al. 2012), and 
a more cost-effective alternative is to monitor changes in species  
occupancy.   

Determining occupancy (the number or proportion of sites 
where a species is found or predicted to occur) is typically less la-
bor intensive than measuring abundance, thus more sites can be 
sampled for a given level of effort (Strayer 1999, Joseph et al. 2006, 
Pollock 2006, Noon et al. 2012). Monitoring changes in occupancy 
can be an effective means to detect changes in population status 
(Noon et al. 2012). A change in occupancy suggests that the pro-
portion of occupied sites has changed but does not necessarily in-
dicate that abundance differs (Strayer and Smith 2003, MacKenzie 

2005), but occupancy and abundance are usually strongly correlat-
ed (Gaston et al. 2000, Joseph et al. 2006, Hui et al. 2012). Occu-
pancy is also a state variable appropriate for large-scale monitoring 
by itself (MacKenzie et al. 2017). 

Monitoring changes in occupancy is typically done in one of 
two ways. The first is monitoring changes where a species is detect-
ed or not detected after surveying a location with only one sam-
pling event per season (e.g., Strayer and Fetterman 1999, Ewing 
and Gangloff 2015). The observed proportion of sites with detec-
tions is termed naïve occupancy (Wintle et al. 2004, MacKenzie 
2005), which does not account for imperfect detection (i.e., detec-
tion probabilities < 1). The second method accounts for imperfect 
detection and potential false absences (sites that are occupied but 
in which the species was not detected during surveys) but requires 
repeated surveys of sites during each sampling period, usually by 
vising each site multiple times (e.g., Sewell et al. 2012, Barata et al. 
2017). 

Catchability (q), is the probability of capturing any individual 
of a particular species, given that it is present at a site (Bayley and 
Peterson 2001, Peterson and Bayley 2004, Smith 2006). It is con-
sidered a random variable conditional on factors such as observer 

Detecting Population Declines Using Occupancy Modeling Ewing et al.

Comparing Naïve Occupancy Versus Modeled Occupancy to Monitor Declines in Rare Species

Todd D. Ewing 1, Southeast Aquatic Resources Partnership, 3437 Apple Meadow Drive, Fuquay-Varina, NC 27526

Jason C. Doll, Department of Biology, Francis Marion University, P.O. Box 100547, Florence, SC 29502

Rebekah L. Ewing, US Fish and Wildlife Service, 520 Federal Hatchery Rd, Erwin, TN 37650

Abstract: Monitoring changes in occupancy (i.e., probability a site has at least one individual of a species) across time is considered an inexpensive al-
ternative to monitoring changes in abundance and can be used to monitor multiple species simultaneously across a watershed. Occupancy can be mea-
sured as the proportion of sites where a species is detected during surveys (i.e., naïve occupancy), but is more commonly modeled by surveying sites 
multiple times to estimate detection probability and address false-positive survey errors (sites that are occupied but with no survey detections of the 
species). This results in an unbiased estimate of occupancy, but at the expense of more effort. The purpose of this study was to determine management 
implications of using naïve occupancy versus using modeled occupancy. We generated simulated data to represent monitoring a population, then com-
pared performance of using naïve occupancy vs. modeled occupancy for detecting changes. Different sampling scenarios were compared using different 
values of catchability (0.05 to 0.70) and various levels of known occupancy decline (35%, 55%, and 85%). Power to detect declines in both naïve occu-
pancy and modeled occupancy increased with higher catchability and greater declines. Naïve occupancy and modeled occupancy performed similarly 
when catchability was high. Modeled occupancy performed slightly better than naïve occupancy at lower catchability; however, at a catchability of 0.05, 
neither occupancy approach was successful at correctly estimating the correct decline. Although modeled occupancy provides more accurate estimates 
of species occupancy, results of our study indicate that regulatory agencies concerned with personnel constraints could likely use a naïve occupancy 
approach to maximize geographical coverage without sacrificing their ability to correctly assign conservation status to imperiled species.

Keywords: catchability, detection, monitoring, presence-absence

Journal of the Southeastern Association of Fish and Wildlife Agencies 11:45–50

1. E-mail: todd@southeastaquatics.net

45



Detecting Population Declines Using Occupancy Modeling Ewing et al.  46

2024 JSAFWA

experience, search time, sampling conditions, gear, and biological 
factors such as age and sex, and can be estimated using techniques 
such as mark/recapture or multiple pass depletion (Bayley and Pe-
terson 2001, Peterson and Bayley 2004, Smith 2006). In the oc-
cupancy context, detectability, p, is the per-survey probability of 
detecting a species at a site where it is present (Bayley and Peterson 
2001, MacKenzie et al. 2002, Peterson and Bayley 2004).

Effective monitoring requires sound sampling design with suf-
ficient power and ability to accurately detect changes of interest to 
avoid drawing incorrect conclusions about a population (Field et 
al. 2007). Accounting for imperfect detection is considered more 
statistically and biologically sound than basing inference on naïve 
occupancy when monitoring changes in occupancy (MacKenzie 
2005, Kéry and Schmidt 2008). Trends derived from two or more 
naïve occupancy estimates will produce biased estimates unless the 
detectability is virtually equal across samples, as is often assumed 
(MacKenzie 2005, Kéry and Schmidt 2008). However, the assump-
tion of equal detectability across samples is often incorrect (Kéry 
and Schmidt 2008). Nevertheless, several studies have shown that 
monitoring naïve occupancy could be effective at detecting declines 
in occupancy. Strayer (1999) and Pollock (2006) found that moni-
toring naïve occupancy has adequate power to detect a statistical-
ly significant decline in occupancy, especially if decline was high 
(Strayer 1999). Joseph et al. (2006) found that monitoring naïve 
occupancy can even be more effective than measuring declines in 
abundance for assigning the correct IUCN conservation status. 

The IUCN assigns a threat category, Critically Endangered, En-
dangered, Vulnerable, or Least Concern, to taxa based on multiple 
quantitative criteria. Criterion A is a reduction in population size. 
A reduction in population can be measured by declines in abun-
dance, area of occupancy, extent of occurrence, or some other in-
dex appropriate index. The thresholds for Critically Endangered 
are a reduction of ≥80%, ≥50% for Endangered, and ≥30% reduc-
tion for Vulnerable over a 10-yr or three-generation period (IUCN 
2022). The IUCN protocol is used by many countries, states, and 
other entities to determine conservation status of a species. An ad-
vantage of the IUCN protocol and similar protocols is that they do 
not require highly accurate estimates of population decline, as they 
assign ranks based on specific ranges of population decline. 

Changes in occupancy are often used to measure population 
declines (e.g., Strayer and Fetterman 1999, Joseph et al. 2006, 
Sewell et al 2012, Ewing and Gangloff 2016, Barata et al. 2017). 
Measuring changes in modeled occupancy is resource intensive 
in the sense that sites must be surveyed multiple times per time 
point (i.e. “season”; see below), generally at least three times and 
often more (MacKenzie and Royle 2005). Consequently, this limits 
the number of sites that can be surveyed on a given budget (Field 

et al. 2005). One appeal of using naïve occupancy over modeled 
occupancy is that typically many more sites could be sampled for 
a given amount of effort. Agency biologists are often tasked with 
managing hundreds of species across multiple watersheds. Be-
cause of this, biologists are often interested in sampling more sites 
because it gives them information about a greater portion of the 
landscape and a greater number of species. Therefore, biologists 
must balance the tradeoff of sampling more sites less intensively 
(i.e., fewer site visits) or fewer sites more intensively (i.e., more site 
visits). However, there have been few if any studies comparing the 
relative performance of modeled occupancy vs. naïve occupancy. 
The purpose of this study was to compare changes in modeled oc-
cupancy versus naïve occupancy in a monitoring scheme to de-
termine what the practical ramifications are when accounting for 
detection when monitoring for changes in occupancy. Our objec-
tive was to determine the relative performance of using modeled 
occupancy vs naïve occupancy of determining the correct IUCN 
conservation classification.

Methods
We use a simulation approach to compare modeled occupancy 

and naïve occupancy in a monitoring context. First, we generated 
populations of known occupancy consisting of various numbers 
of individuals arranged among 500 sites. The populations followed 
a zero-inflated Poisson distribution (Wenger and Freeman 2008) 
with a mean abundance of 10 individuals per site and an initial 
occupancy of 20% (i.e., 20% of sites contain at least one individ-
ual). We then simulated sampling these sites with observation 
error, by first calculating detectability at each site. Detectability 
(p) was estimated as a function of catchability (q) and the num-
ber of individuals of a species present at a site (n) using the for-
mula p = 1 – (1 – q)n (Bayley and Peterson 2001). This generated a 
per-survey probability of detecting the species if present at a giv-
en site (Bayley and Peterson 2001, Peterson and Bayley 2004). We 
then generated a uniformly distributed random number between 
0 and 1. If the random number was less than or equal to the detec-
tion probability, then the species was considered detected at that 
site during the survey. If the random number was greater than the 
detection probability (Strayer 1999), then the species was recorded 
as not detected at that site. We used mean catchability (q) values 
ranging from 0.05 to 0.70, based on catchability ranges reported 
in the literature for nongame fishes (Bayley and Peterson 2001) 
and freshwater mussels (Meador et al. 2011). Catchability is usu-
ally dependent on sampling conditions and should be considered 
as a random variable (Peterson and Bayley 2004), so we modeled q 
as a beta distributed random variable with a standard deviation of 
one-tenth of the mean (Wintle et al. 2004). 
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Our model assumed we had the resources to conduct 210 
surveys in each season. Here a season is defined as a time peri-
od where the occupancy state of a site is unlikely to change, that 
is the site is always occupied or unoccupied during the surveying 
period (MacKenzie et al. 2017). We simulated surveying 210 sites 
one time per season to estimate naïve occupancy and 70 sites three 
times per season as three sampling occasions is typically the min-
imum number recommended for estimating occupancy (Field et 
al. 2005, MacKenzie and Royle 2005). This allowed for comparing 
tradeoffs of sampling more sites once or a lesser number of sites 
more intensively. Naïve occupancy was calculated as the number 
of sites where the species was detected divided by the total num-
ber of sites sampled. Modeled occupancy was calculated using a 
single-species, single-season occupancy model with no covariates 
(MacKenzie et al. 2017).

We then simulated declines in occupancy in our population of 
35%, 55%, and 85%. We chose these percentage declines because 
they are just slightly larger than the thresholds established by the 
IUCN (2022) for different conservation status levels. Population 
reductions were achieved by reducing abundances at randomly 
selected sites to zero until the desired percent reduction in occu-
pancy was attained (Strayer 1999). Since natural populations tend 
to fluctuate in abundances and occupancy over time, abundances 
at each site were multiplied by a random uniform number between 
0.5 and 1.5 which simulated anywhere from a 50% decline to a 50% 
increase in abundance. These populations were then sampled as 
before, with the same sites being sampled. Naïve occupancy and 
modeled occupancy were again calculated, and percent reduction 
in occupancy was calculated based on the differences between the 
occupancy prior to the reduction and afterwards. 

This process was repeated 1000 times for each catchability val-
ue. To evaluate relative performance of the two different methods, 
we calculated proportions of the 1000 simulations that the model 
correctly predicted the correct IUCN classification based on the 
decline in occupancy. We then assessed whether simulations were 
able to assign population decline to the correct IUCN category at 
least 80% of the time, comparable to the frequently used thresh-
old for power analyses in ecological studies (Field et al. 2007). All 
analyses were done in R version 4.2.3 (R Core Team 2023). We 
used the R package unmarked version 1.2.5 (Fiske and Chandler 
2011) for occupancy modeling. Artificial populations of known 
occupancy were generated using the R package VGAM version 
1.1-8 (Yee 2010).

Results
Naïve occupancy and modeled occupancy performed similar-

ly when catchability was high but modeled occupancy performed 

Figure 1. Proportion of 1000 model runs using modeled occupancy or naïve occupancy that correctly 
placed the estimated population decline in the correct IUCN category as a function of catchability (q). 
The dashed line represents where the proportion of correct model runs exceeds 0.8. Models were run 
over a range of catchabilities at three levels of population declines.

slightly better than naïve occupancy at lower catchability. Under a 
35% decline scenario, modeled occupancy reached the 80% cor-
rect categorization threshold at a catchability of approximately 
0.15, whereas, naïve occupancy did not reach this threshold un-
til catchability reached 0.3 (Figure 1). At a 55% decline the two 
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modeling approaches performed more closely; however, the naïve 
approach reached the 80% threshold when catchability was only 
0.10 while the modeled approach did not reach this threshold un-
til catchability exceeded 0.15 (Figure 1). At higher catchabilities, 
the two approaches performed virtually identically. At an 85% 
decline, the naïve approach outperformed the modeled approach 
at catchabilities <0.10 but thereafter the modeled approach per-
formed better, reaching the 80% threshold at a catchability of ap-
proximately 0.15 (Figure 1). The naïve approach did not exceed 
the 80% threshold until catchability reached approximately 0.28. 
Changes in modeled occupancy were typically more precise and 
accurate than naïve occupancy. Modeled occupancy had narrower 

ranges and interquartile ranges and the medians of the model runs 
for modeled occupancy were usually closer to the true value of the 
decline than those for naïve occupancy (Figure 2). 

Discussion
Modeled occupancy performed better than naïve occupancy for 

monitoring population declines. Modeled occupancy typically had 
a higher proportion of correctly allocating declines to the correct 
IUCN conservation status category, greater accuracy, and better 
precision than naïve occupancy. Our results are in line with those 
of previous authors that noted modeled occupancy is superior to 
using naïve occupancy (i.e. MacKenzie 2005, Kéry and Schmidt 
2008). Neither method was effective at the lower end of catchabili-
ty values used during this study (≤0.1). However, this changed for 
modeled occupancy as catchability approached 0.2 and for naïve 
occupancy as catchability approached 0.3 where both methods ex-
ceeded 80% correct allocation. 

Despite not performing as well as modeled occupancy, naïve 
occupancy still appeared to be a useful method for monitoring 
populations under some circumstances. Even at the lowest level of 
decline (35%), naïve occupancy attained appropriate power once 
catchability reached 0.3 and approached 100% correct allocation at 
higher levels of catchability. These results are consistent with those 
of previous studies that found that using naïve occupancy can be 
effective for monitoring populations (Strayer 1999, Joseph et al. 
2006, Pollock 2006). Perhaps the most useful role for naïve occu-
pancy will be for monitoring large numbers of species across large 
landscapes such as entire watersheds. This method is especially use-
ful when highly accurate or precise measures of population decline 
are not required, such as when using a protocol such as those of the 
IUCN (2022) or NatureServe (Master et al. 2012) where status is as-
signed based on measured declines falling within a specified range.

This study underscores the need to increase catchability as 
much as possible when conducting surveys. One way to increase 
catchability is to use experienced personnel when monitoring, es-
pecially for very rare, cryptic, or hard to sample species. For ex-
ample, Rondel (2019) noted that catchability of a rare, federally 
listed mussel species increased as surveyor experience increased. 
Conducting sampling during appropriate conditions also increas-
es catchability. For example, sampling during low flow and sunny 
conditions has been shown to increase catchability for many spe-
cies of freshwater mussels (Smith 2006, Meador et al. 2011). In-
creasing search effort at a given location also increases catchability 
(Metcalfe-Smith et al. 2000, Smith 2006, Reid 2016). Lastly, using 
the correct gear is extremely important, as Bayley and Peterson 
(2001) noted extreme differences in catchability of stream fishes 
depending on the gear type used. 

Figure 2. Box plots showing the distribution of estimated population decline based on 1000 model 
runs using modeled occupancy or naïve occupancy for three different catchability (q) values. Horizon-
tal dashed lines represent the different threat categories based on the IUCN (2022) protocol (Vulnera-
ble = 30–50% decline, Endangered = 50–80% decline, and Critically Endangered = >80% decline). 
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The results of this study are not intended to set guidelines when 
trying to establish a given level of power to detect a decline. There 
are more factors than catchability that determine the power to de-
tect population declines using occupancy. Factors such as popula-
tion abundance, initial occupancy of the population, magnitude of 
decline, and sample size are also extremely important in determin-
ing power to detect a population decline (Strayer 1999, Rhodes 
et al. 2006, Guillera-Arroita and Lahoz-Monfort 2012, Ewing and 
Gangloff 2015). 

Monitoring changes in abundance is often expensive and re-
quires extensive field surveys. This can make it infeasible to mon-
itor abundance for numerous species across large landscapes such 
as entire watersheds as resource agencies are often tasked to do, 
often with limited budgets and personnel constraints. Estimating 
a species’ occupancy typically requires much fewer resources than 
abundance thus lending itself to large-scale monitoring (Noon et 
al. 2012). It also can be effective at monitoring numerous species 
at once, especially those species that lend themselves to omnibus 
surveys where numerous species are monitored simultaneous-
ly (Manley et al. 2004, Noon et al. 2012). Monitoring changes in 
modeled occupancy is typically more statistically and biological-
ly sound when monitoring occupancy than monitoring changes 
in naïve occupancy (MacKenzie 2005, Kéry and Schmidt 2008). 
However, this study has shown that using naïve occupancy can be 
effective, especially when catchability is high, plus it has the advan-
tage over modeled occupancy of being able to survey more sites 
across thus providing better coverage across a landscape. 

There are circumstances where using naïve occupancy is not 
adequate and should not be used. Strayer (1999) and Manley et 
al. (2004) found that naïve occupancy was not effective at moni-
toring very rare species or highly endemic species. In these cases, 
dedicated studies utilizing modeled occupancy should be used. 
Modeled occupancy also has the advantage of utilizing environ-
mental covariates to make to make occupancy predictions stron-
ger (MacKenzie et al. 2017) and so in practice, modeled occupancy 
might perform even better against the naïve model than this study 
suggests. Also, research studies designed to examine the effects of 
environmental factors or land uses on changes in occupancy, as 
well as those examining temporal changes where detectability may 
have changed significantly over time, should use modeled occu-
pancy rather than naïve occupancy (MacKenzie et al. 2017). How-
ever, this study does show that agencies facing manpower shortag-
es and concerned about monitoring changes in geographic extent 
could use naïve in lieu of modeling occupancy. 

Acknowledgments
Thanks to Link McGaughey for programming advice, Nathan 

Hostetter and Krishna Pacifici for help with occupancy model-
ing, the “Unmarked” Google Group for statistical advice, and the 
North Carolina Wildlife Resources Commission for the motiva-
tion and initial funding for this project. 

Literature Cited
Barata, I. M., R. A. Griffiths, and M. S. Ridout. 2017. The power of monitor-

ing: optimizing survey designs to detect occupancy changes in a rare am-
phibian population. Scientific Reports 7:16491. 

Bayley, P. B. and J. T. Peterson. 2001. An approach to estimate probability of 
presence and richness of fish species. Transactions of the American Fish-
eries Society 130:620–633.

Ewing, T. and M. Gangloff. 2015. Using changes in naïve occupancy to detect 
population declines in aquatic species; case study: stability of greenhead 
shiner in North Carolina. Journal of the Southeastern Association of Fish 
and Wildlife Agencies 3:1–5.

Field, S. A., P. J. O’Conner, A. J. Tyre, and H. P. Possingham. 2007. Making 
monitoring meaningful. Austral Ecology 32:485–491.

_____, A. J. Tyre, and H. P. Possingham. 2005. Optimizing allocation of mon-
itoring effort under economic and observational constraints. Journal of 
Wildlife Management 69:473–482. 

Fiske, I. J. and R. B. Chandler. 2011. unmarked: An R package for fitting hier-
archical models of wildlife occurrence and abundance. Journal of Statis-
tical Software 43:1–13. 

Gaston, K. J., T. M. Blackburn, J. J. D. Greenwood, R. D. Gregory, R. M. Quinn, 
and J. H. Lawton. 2000. Abundance-occupancy relationships. Journal of 
Applied Ecology 37(Suppl. 1):39–59.

Guillera-Arroita, G. and J. J. Lahoz-Monfort. 2012. Designing studies to de-
tect differences in species occupancy: power analysis under imperfect de-
tection. Methods in Ecology and Evolution 3:860–869. 

Hui, C., C. Boonzaaier, and L. Boyero. 2012. Estimating changes in species 
abundance from occupancy and aggregation. Basic and Applied Ecology 
13:169–177.

International Union for the Conservation of Nature (IUCN). 2022. Guidelines 
for using the IUCN Red List categories and criteria Version 15.1. Gland, 
Switzerland.

Joseph, L. N., S. A. Field, C. Wilcox, and H. P. Possingham. 2006. Presence- 
absence versus abundance data for monitoring threatened species. Con-
servation Biology 20:1679–1687. 

Kéry, M. and B. R. Schmidt. 2008. Imperfect detection and its consequences 
for monitoring conservation. Community Ecology 9:207–216. 

MacKenzie, D. I. 2005. What are the issues with presence-absence data for 
wildlife managers? Journal of Wildlife Management 69:849–860. 

_____ and J. A. Royle. 2005. Designing occupancy studies: general advice and 
allocating survey effort. Journal of Applied Ecology 42:1105–1114. 

_____, J. D. Nichols, G. B. Lachman, S. Droege, J. A. Royle, and C. A. Lang-
timm. 2002. Estimating site occupancy rates when detection probabilities 
are less than one. Ecology 83:2248–2255. 

_____, _____, J. A. Royle, K. H. Pollock, L. L Bailey, and J. E. Hines. 2017. 
Occupancy estimation and modeling: inferring patterns and dynamics of 
species occurrence, 2nd edition. Academic Press. Cambridge, Massachu-
setts. 

Manley, P. N., W. J. Zielinski, M. D. Schlesinger, and S. R. Mori. 2004. Evalu-
ation of a multiple-species approach to monitoring species at the ecore-
gional scale. Ecological Applications 14:296–310. 



Detecting Population Declines Using Occupancy Modeling Ewing et al.  50

2024 JSAFWA

Master, L. L., D. Faber-Langendoen, R. Bittman, G. A. Hammerson, B. Heidel, 
L. Ramsay, K. Snow, A. Teucher, and A. Tomaino. 2012. NatureServe con-
servation status assessments: Factors for evaluating species and ecosys-
tem risk. NatureServe, Arlington, Virginia.

Meador, J. R., J. T. Peterson, and J. M. Wisiniewski. 2011. An evaluation of 
the factors influencing freshwater mussel capture probability, survival, 
and temporary emigration in a large lowland river. Journal of the North 
American Benthological Society 30:507–521.

Metcalfe-Smith, J. L., J. Di Maio, S. K. Staton, and G. L. Mackie. 2000. Effect of 
sampling effort on the efficiency of the timed search method for sampling 
freshwater mussel communities. Journal of the North American Bentho-
logical Society 19:725–732.

Noon, B. R., L. L. Bailey, T. D. Sisk, and K. S. McElvey. 2012. Efficient species- 
level monitoring at the landscape scale. Conservation Biology 26:432–441.

O’Grady, J. J., D. H. Reed, B. W. Brook, and R. Frankham. 2004. What are 
the best correlates of predicted extinction risk? Biological Conservation 
118:513–520.

Peterson, J. T. and P. B. Bayley. 2004. A Bayesian approach to estimating pres-
ence when a species is undetected. Pages 173–188 in W. L. Thompson, 
editor. Sampling rare or elusive species: concepts, designs, and techniques 
for estimating population parameters. Island Press, Washington, D.C. 

Pollock, J. E. 2006. Detecting population declines over large areas with  
presence-absence, time-to-encounter, and count survey methods. Con-
servation Biology 20:882–892. 

R Core Team. 2023. R: A language and environment for statistical computing. 
R Foundation for Statistical Computing, Vienna, Austria. 

Reid, S. M. 2016. Search effort and imperfect detection: influence on timed-
search mussel (Bivalvia: Unionidae) surveys in Canadian rivers. Knowl-
edge and Management of Aquatic Ecosystems 417:17. 

Rhodes, J. R., A. J. Tyre, N. Jonzén, C. A. McAlpine, and H. P. Possingham. 
2006. Optimizing presence-absence surveys for detecting population 
trends. Journal of Wildlife Management 70:8–18.

Rondel, C. L. 2019. Estimating population distribution and abundance using 
occupancy and detection models. Master’s thesis, Appalachian State Uni-
versity, Boone, North Carolina.

Sewell, D., G. Guillera-Arroita, R. A. Griffiths, and T. J. Beebee. 2012. When is 
a species declining? Optimizing survey effort to detect population chang-
es in reptiles. PLoS One 7:1–8. 

Smith, D. R. 2006. Survey design for detecting rare freshwater mussels. Jour-
nal of the North American Benthological Society 25:701–711.

Strayer, D. L. 1999. Statistical power of presence-absence data to detect popu-
lation declines. Conservation Biology 13:1034–1038.

_____ and A. R. Fetterman. 1999. Changes in the distribution of freshwater 
mussels (Unionidae) in the upper Susquehanna River basin, 1955–1965 
to 1996–1997. American Midland Naturalist 142:328–339.

_____ and D. R. Smith. 2003. A guide to sampling freshwater mussel popu-
lations. American Fisheries Society, Monograph 8, Bethesda, Maryland. 

Wenger, S. J. and M. C. Freeman. 2008. Estimating species occurrence, abun-
dance, and detection probability using zero-inflated distributions. Ecolo-
gy 89:2953–2959. 

Wintle, B. A., M. A. McCarthy, K. M. Parris, and M. A. Burgman. 2004. Preci-
sion and bias of methods for estimating point survey detection probabili-
ties. Ecological Applications 14:703–712. 

Yee, T. W. 2010. The VGAM Package for categorical data analysis. Journal of 
Statistical Software 32:1–34.


