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Abstract: More than 1 million wildlife-vehicle collisions occur annually in the United States. The majority of these accidents involve white-tailed deer 
(Odocoileus virginianus) and result in >US $4.6 billion in damage and >200 human fatalities. Prior research has used collision locations to assess site-
specific as well as landscape features that contribute to risk of deer-vehicle collisions. As an alternative approach, we calculated road-crossing locations 
from 25 GPS-instrumented white-tailed deer near Madison, Georgia (n = 154,131 hourly locations). We identified crossing locations by creating move-
ment paths between subsequent GPS points and then intersecting the paths with road locations. Using AIC model selection, we determined whether 10 
local and landscape variables were successful at identifying areas where higher frequencies of deer crossings were likely to occur. Our findings indicate 
that traffic volume, distance to riparian areas, and the amount of forested area influenced the frequency of road crossings. Roadways that were predomi-
nately located in wooded landscapes and 200–300 m from riparian areas were crossed frequently. Additionally, we found that areas of low traffic volume 
(e.g., county roads) had the highest frequencies of deer crossings. Analyses utilizing only records of deer-vehicle collision locations cannot separate the 
relative contribution of deer crossing rates and traffic volume. Increased frequency of road crossings by deer in low-traffic, forested areas may lead to a 
greater risk of deer-vehicle collision than suggested by evaluations of deer-vehicle collision frequency alone. 
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The number of annual deer-vehicle collisions (DVCs) in the 
United States has been estimated to be over 1 million (Putman 
1997, Hussain et al. 2007). These collisions result in >US $4.6 bil-
lion in damage and >200 fatalities annually (Conover et al. 1995, 
Conover 1997, Conover 2002, National Traffic Safety Adminis-
tration 2002, Huijser et al. 2009). Further, DVCs can impact deer 
populations with an estimated fatality rate of 90% (Conover et al. 
1995, Huijser et al. 2009) resulting in the loss of 900,000 deer an-
nually which approximates 15% of the annual deer harvest in the 
United States (Adams and Ross 2015). In many suburban areas, 
the number of deer killed via DVCs often outnumbers the number 
of deer harvested by hunters (Frye 2006).

Due to the crepuscular nature of deer, most accidents tend to 
occur in the hours surrounding dusk and dawn. These peaks are 
associated with patterns of traffic volume and deer activity (Al-
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len and McCullough 1976, Kammermeyer and Marchinton 1977, 
Arnold 1978, Finder et al. 1999). Recent studies have found that 
there are relatively high frequencies of DVCs in areas of increased 
vehicle speed and increased traffic volume (Nielson et al. 2003, Ng 
et al. 2008, McShea et al. 2008). However, conflicting reports in-
dicate that traffic volume and vehicle speeds are unrelated to the 
occurrence of DVCs (Bissonette and Kassar 2008).

Landscape structure can mediate deer behavior by influencing 
habitat selection, movement patterns, and home-range size (Kie 
et al. 2002). However, the role in which landscapes mediate road 
crossing is not clear, with regional studies often providing differing 
results (Bellis and Graves 1971, Puglisi et al. 1974, Rost and Bai-
ley 1979, Hussain et al. 2007, Found and Boyce 2011a). Collisions 
most often occur on roadways that are adjacent to forested areas 
or that are in close proximity of riparian areas (Romin and Bissio-
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nette 1996, Finder et al. 1999, Stewart et al. 2007, Farrell and Tappe 
2007). The landscape configuration may also contribute to DVCs 
because edge density, patch density, and diversity have been shown 
to influence movement patterns in deer (Kie et al. 2002, Plante et 
al. 2004). For a more thorough analysis of past wildlife-vehicle col-
lision research see Gunson et al. (2011).

Prior research has focused on post-hoc analysis, using white-
tailed deer and mule deer (O. hemionus) mortality locations to de-
termine likely causes (Bellis and Graves 1971, Puglisi et al. 1974, 
Rost and Bailey 1979, Romin and Bissonette 1996, Finder et al. 
1999, Found and Boyce 2011a). Unfortunately, these analyses 
are confounded because many accidents are not reported, driver 
knowledge of DVC risk may bias realized risk, and the influence of 
traffic volume and deer road-crossing frequency cannot be sepa-
rated when assessing DVC risk to motorists. We assessed whether 
an alternate approach using radio-instrumented deer would en-
hance assessment of DVC risk. Our objective was to determine 
landscape, anthropogenic, and hydrological characteristics that 
determine where deer are likely to cross roadways. We hypothe-
sized that specific landscape features mediate deer crossings. Iden-
tifying such features can help focus DVC mitigation efforts in areas 
that pose the most risk to motorists.

Study Area
The focal area was located immediately southeast of Madison, 

Georgia, in Morgan County (333517N 832821W). The city of 
Madison has approximately 4,000 residents and lies along U.S. In-
terstate 20 (I-20). The landscape within the study area transitions 
from the urban areas of Madison to large patches of deciduous and 
coniferous forests, and a variety of agricultural lands. Elevation of 
the region ranged from approximately 120 to 250 m, with the ma-
jority of the variation being a result of small hydrological features 
(streams and creeks). Our focal area consisted of approximately 
101.73 km2 and was split into two sections by I20. A 1.2-m woven 
wire fence, used to delineate the I-20 right-of-way, was in various 
stages of disrepair. There were additional roadways of varying ac-
tivity, including U.S. Route 278, county roads (e.g., Bethany Road, 
Bethany Church Road), and smaller single-lane paved or dirt 
roads within the study area. 

Methods
Capture

During winter and spring 2012 and 2013, we darted deer 32 
white-tailed deer within 0.5km of I20 using 3-ml transmitter darts 
(Pneu-dart Inc., Williamsport, Pennsylvania) containing Telazol 
(500mg; tiletamine hydrochloride and zolazepam hydrochlo-
ride; Fort Dodge Animal Health, Fort Dodge, Iowa) and AnaSed 

(450mg; xylazine hydrochloride; Congaree Veterinary Pharmacy, 
Cayce, South Carolina). We applied eye ointment (Dechra Veteri-
nary Products, Overland Park, Kansas) and blindfolded immo-
bilized deer. Captured deer were outfitted with ear tags for indi-
vidual identification and FOLLOWiT Tellus Medium GPS collars 
with UHF download/remote drop-off capabilities (FOLLOWiT 
Wildlife, Lindesberg, Sweden). All animal capture and handling 
procedures were approved by the University of Georgia Insti-
tutional Animal Care and Use Committee (#A2011 08-023-R1). 
Collars were programmed to collect 24 locations per day at equal 
intervals for a two-year period. The collars were equipped with a 
VHF beacon allowing for regular mortality checks, a remote UHF 
drop mechanism, and a UHF download system allowing the user 
to download data remotely. 

Modeling Procedures
Of the 32 collared animals, we used the data of 25 individu-

als that crossed roads, including 8 adult females, 9 adult males, 
1 juvenile female, and 7 juvenile males. Due to mortalities, collar 
failures, and premature releases, we did not obtain 24 continuous 
months of data from each individual animal; however, the cumu-
lative data of all individuals represent a continuous 2-year period, 
March 2012 to February 2014.

We used ArcInfo v.10.1 (Environmental Systems Research In-
stitute, Redlands, California) to perform data manipulation to 
estimate locations of deer crossings. We created line segments 
between chronologically ordered points for each individual and 
calculated where a line crossed a section of road (Georgia Depart-
ment of Transportation 1993, Riginos et al. 2013). We excluded 
any road segments that were not within 200 m of a deer location 
point. Additionally, we removed I-20 from the analysis based on 
the assumption that the right-of-way fence may have acted as a 
semi-permeable barrier that would have influenced road crossings 
in that intact or broken sections of fence may have dictated where 
road crossings occurred rather than landscape features. To address 
the assumption that an individual crossed a roadway directly be-
tween the two GPS points, we used a 100-m circular moving win-
dow to calculate the total numbers of crossings within the window. 
We then created a sampling point every 100 m along all roadways 
within the focal region that represented the total number of deer 
crossings at each point between March 2012 and February 2014.

Predictor Variables
We identified 10 variables as potential predictors of deer cross-

ing locations, including road type, percent forest, percent agricul-
ture, edge density, patch density, Shannon’s diversity index, dis-
tance from stream, slope, terrain ruggedness, and slope position 
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(Table 1). We did not have access to traffic volume data; therefore, 
we binned the road segments into three categorical levels based 
on roadway size (i.e., low, medium and high use) with dirt and 
single-lane roads as low (e.g., private access roads), county and lo-
cal roads as medium (e.g., Bethany Rd), and state routes as high 
(e.g., Route 278). We obtained habitat data from the 2011 National 
Land Cover Database (NLCD) which provided 20 land cover class-
es at a 30- x30-meter resolution (Jin et al. 2013). We reclassified the 
NLCD raster by combing all forest types (conifer, deciduous, and 
mixed) into one class and did the same for all types of agriculture 
(pasture/hay and cultivated crops). The reclassification was done 
because we assumed that all types of forest represent equal security 
cover as roads are perceived as threats, and we assumed that both 
types of agriculture presented foraging opportunities (Bellis and 
Graves 1971, Puglisi et al. 1974, Rost and Bailey 1979, Romin and 
Bissonette 1996).

The landscape metrics (patch density, edge density, and Shan-
non’s diversity) were included as potential predictors because they 
have been previously identified as related to ungulate movements 
(Kie et al. 2002, Plante et al. 2004). Percent forest and agriculture, 
along with the three landscape metrics (edge, patch, Shannon’s) 
were calculated via Fragstats V.4 (McGarigal et al. 2012) using a 
square moving window at two different spatial scales (200 m and 
500 m). Two spatial scales were considered because landscape 
variability was hypothesized to differ between these selected habi-
tat scales. We obtained riparian layers to calculate the distance of 
a sampling point from a stream or riparian area (Georgia Depart-

ment of Transportation 1996). We included the distance from ri-
parian zones due to studies that have shown that drainages and 
riparian zones can influence deer movement, specifically when ap-
proaching roadways (Mansfield and Miller 1975, Dusek et al. 1988, 
Reeve 1988).

The three topographical metrics were derived from a digital el-
evation model (DEM) from the U.S. Geological Survey, National 
Map Server (2013). Slope, terrain ruggedness, and slope position 
were included because they can influence deer movements directly 
by aiding or hindering movement and indirectly by contributing 
to environmental constraints such as vegetation composition, sun 
exposure, and hydrology (Rost and Bailey 1979, Ganskopp and 
Vavra 1987). Terrain ruggedness was determined by calculating 
the standard deviation of elevation within 200 m and slope posi-
tion is equal to the elevation of the cell minus the mean elevation 
within 200 m. Slope position values greater than 0 were elevated 
areas such as hilltops, values near zero were at median elevation or 
on side-slopes, and negative values were valleys or low-lying areas. 

Statistical Analyses
Statistical analysis was performed in R (R Core Team 2013). 

Given that the data for number of road crossings existed as discrete 
counts, we constructed generalized linear models with a negative 
binomial distribution, using a loge-link function in the MASS pack-
age (Poch and Mannering 1996, Venables and Ripley 2002). To ad-
dress the zero inflation of the data of having over 6,000 values of 
zero deer crossings out of the 7,175 generated data points, we sub-
set the data by randomly selecting 1,000 points from the original 
6,000. The random sampling of zero-valued points created a total 
data set of 2,175 points. We calculated Pearson product-moment 
correlation coefficient among potential predictor variables twice, 
once including the 200-m landscape variables and then a second 
time using the 500-m landscape variables. We found that there 
were similar correlations regardless of landscape scale and excluded 
any variables that had a coefficient value greater than or equal to 
+/–0.70. After removing correlated predictor variables, we were left 
with seven potential predictor variables—road type, edge density, 
percent forest, distance to streams, slope, slope position, and terrain 
ruggedness.

We built 19 models using different combinations of land cover, 
hydrology, and terrain variables that may best explain the number 
of deer crossings. As we were interested in identifying the spatial 
scale (200 m or 500 m) at which land cover variables best ex-
plained deer crossings, we performed AICc model selection in two 
stages (Burnham and Anderson 2002). First, we conducted model 
selection for each spatial scale independently (200 m and 500 m), 
including a null model (i.e., the intercept-only model), calculated 

Table 1. Definition and description of local and landscape variables included in the analysis of deer 
roadway crossing, Morgan County, Georgia, 2012–2014.

Variable Definition

Local-level

 Road type Three categories of assumed traffic activity level: low (dirt and single-lane 
roads), medium (county and local roads) and high (state routes)

 Distance to stream The distance of a sampling point from a stream or riparian area

 Slope The mean slope within a 200-m buffer of a sample location

 Slope position Equal to the elevation of the cell minus the mean elevation within 200 m.

 Terrain ruggedness The standard deviation of elevation within 200 m 

Landscape-level

 Percent forest Percentage of landscape classified as conifer, mixed or deciduous forest (NLCD 
2011) within a 200-m or 500-m buffer surrounding the crossing location

 Percent agriculture Percentage of landscape classified as agriculture (NLCD 2011) within a 200-m 
or 500-m buffer surrounding the crossing location

 Edge density Sum of lengths (m) of all edge segments divided by the total landscape area 
(m2)

 Patch density The number of patches in the landscape divided by the total landscape area

 Shannon’s diversity A measure of both patch type richness and relative abundance
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AIC and reported models receiving at least 95% of the weight. Fol-
lowing the two scale-independent analyses, we then performed a 
final model selection using the top models from each buffer size, 
again including a null model.

Results
When performing model selection using the 200-m moving 

window for landscape characteristics, we found that the model 
containing only road type and edge density as predictor variables 
had the lowest AICc (AICcwi = 0.64) while the global model re-
sulted in an AICc value that was greater than the top model by 1.17 
(AICcwi = 0.36) (Table 2). Within the best model, road type and 
edge density were both significant (P ≤ 0.05) and had 95% confi-
dence intervals that did not cross zero (Table 3); and in the global 
model, only road type and edge density were significant (P ≤ 0.05). 
All other considered models, including the null model, received 
less than 0.0001 model weight (wi). The parameter estimates for 
road type suggest that areas of high crossing frequency most often 
occur along less active or developed segments of road (dirt and 
single-lane roads) (Figure 1).

When model selection included landscape metrics from a 500-
m moving window, there was a slight change in the outcome. The 
global model containing all seven predictors was the top model 
(AICcwi = 0.498), while the model containing only road type, dis-
tance to stream, and percent forest as predictors had an ΔAICc 
value that was less than 2 (AICcwi = 0.492). In the top model, the 
predictors of road type, distance to stream, and percent forest were 
significant (P ≤ 0.001), as was slope position (P ≤ 0.015). The con-
fidence intervals of all significant predictors did not cross zero. In 

the second best model, which only contained three predictors—
road type, distance to stream and percent forest—each of the three 
parameters were significant (P ≤ 0.05) and their confidence inter-
vals did not cross zero.

Following the combined model selection procedure, which in-
cluded five models (the two top models from the 200-m landscape 
buffer, the two top models from the 500-m buffer, and a null mod-
el), we determined that the global model that included landscape 
predictors from a 500-m buffer best fit the data (Table 2, Figure 2). 
In this case, the top model carried a weight (AICcwi) of 0.50, while 
the 500-m model of road type, distance to stream, and percent for-

Table 2. Akaike’s Information Criterion including number of parameters (K), AICc, ΔAICc, and Akaike 
weights (wi) for candidate models relating to variables influencing road crossing by white-tailed deer 
on a study area in Morgan County, Georgia, during 2012–2014. All other models evaluated received 
less than 0.01 weight.

Model K AICc ΔAICc wi

200m     

 Road type + edge density 4 6603.88 0 0.64

 Global 9 6605.05 1.17 0.36

500m     

 Global 9 6584.63 0 0.50

 Road type + distance to stream + percent forest 5 6584.65 0.02 0.50

Only top models     

 Global (500m) 9 6584.63 0 0.50

 Road type + distance to stream + percent forest (500m) 5 6584.66 0.03 0.50

 Road type + edge density (200m) 4 6603.88 19.25 <0.01

 Global (200m) 9 6605.05 20.42 <0.01

 Null 1 7223.90 639.27 <0.01

Table 3. Model estimates and confidence intervals for the top models for each of the two spatially 
explicit analyses (200 m and 500 m) relating to variables influencing road crossing by white-tailed 
deer on a study area in Morgan County, Georgia, during 2012–2014.

Model Name
Model  
predictors Estimate P-value

95% Confidence  
interval

200m    2.5% 97.5%

 Global
 
 
 
 
 
 
 

Intercept 1.39 < 0.0001 0.826 1.949

Road type (medium) –1.75 < 0.0001 –1.94 –1.559

Road type (high) –3.02 < 0.0001 –3.357 –2.6988

Edge density 0.003 < 0.0001 0.002 3.319

Percent forest –0.002 0.133 –0.004 7.066

Distance to stream –0.0005 0.026 –0.001 –8.448

Slope –0.005 0.831 –0.049 4.015

Terrain ruggedness 0.10 0.394 –0.147 3.475

Slope position 0.017 0.310 –0.018 5.119

 Road type + 
  edge density
 

Intercept 1.267 < 0.0001 1.129 1.407

Road type (medium) –1.674 < 0.0001 –1.822 –1.529

Road type (high) –2.9 < 0.0001 –3.21 –2.606

Edge density 0.003 < 0.0001 0.002 0.004

500m  

 Road type +  
 distance to stream +  
 percent forest

Intercept 0.728 < 0.0001 0.409 1.047

Road type (medium) –0.948 < 0.0001 –1.161 –0.735

Road type (high) –2.177 < 0.0001 –2.523 –1.839

Distance to stream –0.001 < 0.0001 –0.001 –0.0002

Percent forest 0.013 < 0.0001 0.009 0.017

 Global
 
 
 
 
 
 
 

Intercept 1.481 < 0.0001 0.874 2.091

Road type (medium) –0.87 < 0.0001 –1.088 –0.654

Road type (high) –2.148 < 0.0001 –2.494 –1.81

Edge density –0.002 0.057 –0.003 0.0001

Percent forest 0.0134 < 0.0001 0.009 0.017

Distance to stream –0.001 < 0.0001 –0.002 –0.0005

Slope 0.015 0.592 –0.028 0.059

Terrain ruggedness –0.299 0.46 –0.554 –0.045

Slope position 0.009 0.015 –0.025 0.043
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est carried the remaining 0.496. We compared the observed values 
of the data against the predicted values created from our simplest 
of the two competing top model which contained the predictors of 
road type, distance to streams, and percentage of forest cover with-
in a 500-m buffer (Figure 3). The largest discrepancy between the 

Figure 1. The frequency at which collared white-tailed deer crossed focal roadways during 
2012–2014. 

Figure 2. Landscape values associated with each observed crossing frequency, (A) the distance from 
stream (m), (B) the percentage of the forested landscape, and (C) the road type. Landscape values are 
associated to white-tailed deer crossing locations on a study area in Morgan County, Georgia, during 
2012–2014.

observed and predicted values occurred at crossing frequencies of 
0 and 1, with observed values of 0 being under-represented, and 
values of 1 being over-represented. This pattern is likely due to our 
subset of the data, given the inflated frequency of 0 crossing values.
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Discussion
The results of model selection suggest that the size of the road 

was a good predictor of whether there would be a higher frequency 
of crossings by deer. Smaller roadways (i.e., dirt and local roads), 
which we assumed had the lowest traffic value, were crossed much 
more frequently than larger roadways. It is likely that an increase 
in traffic volume would act as a deterrent, reducing the likelihood 
of crossing. When comparing landscape scales (200 m and 500 
m), we found that a larger buffer size more accurately predicted 
crossing frequency and within those landscapes the percentage of 
woody cover and the distance to riparian areas were the most in-
fluential.

Our results coincide with previous research in that deer tend to 
avoid areas of high human activity (Bellis and Grave 1971, Romin 
and Bissonette 1996, Jepsen and Topping 2004, Sawyer et al. 2006, 
Sawyer et al. 2009), with crossings occurring in higher frequency 
in areas of low traffic volume. Additionally, vegetation cover has 
been documented to be an important factor in deer crossing, with 
deer in our study crossing more frequently (10 or more crossings) 
in areas that were composed of approximately 80%–90% forest 

(Finder 1998, Iverson and Iverson 1999, Farrell and Tappe 2007). 
While prior research suggests that deer tend to cross roadways 

along riparian areas (Romin and Bissionette 1996, Finder et al. 
1999, Gunson et al. 2009), we found that areas 200–300 m from 
riparian areas experienced the highest frequency of crossings. The 
distance from riparian areas has implications for the construction 
of large underpass culverts along riparian areas to act as wildlife 
movement corridors (Reed et al. 1975, Braden et al. 2008).

Our method is unique in that we used GPS-instrumented deer 
to identify high frequency crossing areas to determine DVC risk, 
while previous works have focused on deer mortality locations to 
determine high-risk areas. Although using DVC locations can be 
useful for identifying landscape variables that contributed to deer 
mortality, DVCs may be influenced by road type. More specifical-
ly, roads with greater traffic volume, such as state highways, may 
negatively influence deer crossing behavior and success. Despite 
fewer crossings on high traffic roadways, lower crossing success 
may accumulate mortality data more quickly and in greater quan-
tities than roadways with less traffic. Therefore DVC risk models 
using DVC data may be a better representation of increased risk 
for deer than for motorists. In our study, deer crossed low traffic 

Figure 3. The frequency of occurrence for the number of crossings that roadway sampling points experienced with observed crossing frequencies (black) and 
the modeled expected values per sampling location (gray). Crossings were conducted by white-tailed deer on a study area in Morgan County, Georgia, during 
2012–2014.
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roads more frequently than high traffic roads. Because traffic vol-
ume was lower, individual motorist risk of encountering a deer 
was greater, thus justifying the need to identify landscape variables 
that facilitate road crossing.

Our technique can provide an additional tool for managers, al-
lowing them to model segments of roadways that have an increased 
likelihood of deer crossings, and therefore better focus mitigation 
efforts. Possible solutions include the introduction of signage that 
warns motorists of an increased threat, which has been effective in 
mitigating DVCs (Sullivan et al. 2004, Found and Boyce 2011b). 
Alternatively the removal of dense vegetation along roadways re-
moves security cover and may increase the ability of motorists to 
see deer (Rost and Bailey 1978, Jaren et al. 1991).
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