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Abstract: This project sought to classify 108 Oklahoma impoundments based on water quality as well as determine if water-quality parameters in these 
impoundments influenced the relative weight (Wr) of largemouth bass (Micropterus salmoides), white crappie (Pomoxis annularis) and black crappie 
(Pomoxis nigromaculatus), and channel catfish (Ictalurus punctatus). Agglomerative hierarchical clustering and subsequent discriminant analysis of 
seven water-quality parameters resulted in the grouping of impoundments into three classes. Chlorophyll-a, salinity, pH, and dissolved oxygen were the 
most important explanatory variables (83%) in impoundment classification. Class-1 impoundments (primarily located in east central and southeastern 
Oklahoma) had low salinity and pH values. Class-2 impoundments (spread statewide with a high concentration in the central part of the state) had 
mid-range pH and mid to low-range salinity values. Class-3 impoundments exhibited higher salinity and pH values. Mean Wr was relatively consis-
tent among impoundment classes (largemouth bass = 92–98, crappie = 91–96, channel catfish = 86–92), but individual impoundment Wr ranged widely 
among classes (largemouth bass = 78–129, crappie = 66–139, channel catfish = 66–147), suggesting differences in fish condition among some impound-
ments. Multiple regression models found only a weak relationship among water-quality parameters and Wr, explaining no more than 11% of the varia-
tion among species, suggesting that additional research is needed before a solid model of lake classification can be suggested. Despite the lack of relation 
between Wr and water quality found in this study, other standard population metrics (e.g., size structure, age structure, and growth and mortality rates) 
may better characterize population health and therefore show a better correlation to limnological characters. Given the differences in water-quality 
parameters among impoundment classes noted in this study, a class-level goal for a particular metric might serve a better purpose and prove more ben-
eficial to a manager than a statewide goal. 
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such as lipid content, exist to determine fish body condition, these 
analyses are expensive and require an advanced level of expertise 
to perform. For most applications, length and weight data provide 
adequate results for fish condition (Quist et al. 2009).

Various factors can mediate growth and body condition of fish-
es in aquatic systems. Landscape-scale factors such as geology and 
land uses can determine the availability and concentration of nu-
trients and other ions in the water. Trophic state of waterbodies 
can play a large factor in determining growth and ultimately body 
condition of fishes. For instance, Chu et al. (2015) examined fish 
Wr of up to 22 species in 693 Ontario lakes and found that Wr was 
higher for fish in eutrophic systems than those from oligotrophic 
and mesotrophic systems. Similarly, DiCenzo et al. (1995) noted 
that Wr of Alabama bass (Micropterus henshallli) in 10 Alabama 
reservoirs had a positive correlation to parameters including chlo-
rophyll-a, drainage area, alkalinity, conductivity, and the morph-
oedaphic index, but had a negative correlation with Secchi disk 
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Fisheries management is primarily concerned with creating 
and/or maintaining sustainable fish populations to support recre-
ational and commercial fisheries. Often, successful fisheries have 
fast growing, healthy sportfish populations; thus, fisheries biolo-
gists usually measure the body condition of fishes in waterbodies 
under their purview. One tool used to measure this is the rela-
tive weight (Wr) metric, which is a measure of an individual fish’s 
health. It is determined by comparing the weight of an individu-
al fish to a standard weight at the same length, calculated using 
an equation for each species that has been derived using length-
weight data from a large number of populations across its range 
(Neumann et al. 2012). This value is given as a percentage of an in-
dividual fish’s actual weight compared to its standard weight (Bol-
ger and Connolly 1989). It is assumed that a healthy fish will weigh 
more than the average fish, and thus a high value for Wr equates to 
a fat, healthy fish, while a low Wr equates to a thin, malnourished 
fish (Wright 2000). Although other physiological based indices, 
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transparency. Most of these factors are correlated with trophic 
state, with eutrophic waters often having higher chlorophyll-a, 
alkalinity, and conductivity, but low Secchi disk transparencies. 
Although some of these variables are influenced by anthropogen-
ic impacts such as sedimentation and non-point nutrient inputs, 
Chu et al. (2015) found that ecological (air temperature, precipi-
tation, lake morphometry, and water quality) variables had a larg-
er impact on fish condition than anthropogenic (human related 
watershed stress and angling pressure) variables in Ontario lakes. 
While eutrophication of a particular waterbody can initially result 
in increased Wr for a species, increased nutrients can result in the 
inhibition of natural reproduction and the eventual replacement 
of existing taxa by more tolerant species (Colby et al. 1972). This 
process has been observed within the Percidae family, where an 
initial increase in growth rate and production was followed by a 
large decline (Leach et al. 1977). 

The Wr index has proven useful to evaluate population quality 
in terms of growth, individual fitness, density, and forage supply 
(Willis 1987, Guy and Willis 1995, Maceina and Grizzle 2006). 
Unlike age evaluations, length and weight data are commonly col-
lected in the field, allowing easy calculation of Wr. Thus, data to 
calculate this index is often available over large geographic scales, 
allowing biologists to conduct regional evaluations of body con-
dition across numerous systems of varying physical and chemical 
compositions. If Wr is related to these waterbody characteristics, 
it could afford biologists a tool to understand the potentials and 
limitations of these systems and offer a way of grouping them in 
terms of potential biologic productivity in lieu of simply close 
geographic proximity. Given that optimal chemical and physical 
characteristics of waterbodies differ among many popular sport 
fish species, the relationship between Wr and these characteristics 
are likely species specific. Quantifying these impacts would allow 
for more efficient management of aquatic systems and offer a tool 
for state agencies to engage the angling public to help them better 
understand how water-body characteristics and species biological 
requirements interact.

In order to understand whether Oklahoma impoundments 
could be grouped into similar classes based on routinely mea-
sured water-quality variables, we investigated the potential effect 
of water-quality parameters for 108 impoundments across the 
state on the mean Wr for largemouth bass (Micropterus salmoides), 
black crappie (Pomoxis nigromaculatus) and white crappie (Po-
moxis annularis), and channel catfish (Ictalurus punctatus). These 
species were chosen due to their wide distribution across the 
state, their popularity among recreational anglers, and the large 
amounts of data available in comparison to other sportfish species. 
The objectives of this project were to: 1) determine if a correlation 

exists between the mean Wr of the four study species and seven 
water-quality variables in 108 Oklahoma impoundments, and 2) 
classify these impoundments according to their water chemistry. 

Study Area
The study area for this project encompassed 108 impound-

ments in Oklahoma. Impoundments with the largest surface areas 
are concentrated in the eastern portion of the state, with several 
smaller bodies of water located in the central and southwestern 
regions, decreasing in abundance moving northwest into the pan-
handle (Figure 1). This is mostly due to a significant variation in 
annual precipitation, which decreases from east to west across the 
state. Oklahoma’s annual precipitation can vary from greater than 
139 cm in the far southeast to less than 50 cm in the western Okla-
homa panhandle (Mesonet 2017). As a result of regional precipi-
tation differences, the dominant vegetation cover transitions from 
heavily timbered areas in eastern Oklahoma, to semiarid plains 
and Rocky Mountain foothill vegetation in the west. With a large 
portion of the state situated in the Southern Plains, Oklahoma 
experiences all seasons and has large daily temperature variation 
(Costa et al. 2007).

Ranching and agricultural land use is common throughout the 
state, particularly in the western half; whereas, forestry is common 
in the southeast.  Some impoundments, such as Arcadia, Hefner, 
and Keystone are located adjacent to or within major population 
centers. Geologic factors, such as the contribution of salts to many 
western Oklahoma streams (the Cimarron River and Elm Fork 
of the Red River in particular) that drain the eastern edge of the 
Permian Basin likely contribute to high salinity levels in certain 
impoundments (Johnson 1981). Increased precipitation has been 
correlated to decreased salinity in some western Oklahoma streams 
(Pionke and Nicks 1970). The ranges of values for impoundment 
water-quality parameters (chlorophyll-a, average turbidity, average 
Secchi depth, salinity) are vast (Figure 1).

Methods
This project utilized three data sources. The Oklahoma Water 

Resources Board (OWRB) provided geospatial data for all the 
impoundments (OWRB 2016a). Water-quality data came from 
the Beneficial Use Monitoring Program (BUMP) of the OWRB 
(OWRB 2016b). Length (TL, mm), weight (g), and sampling data 
(gear type, unit of effort, date) for each study species were taken 
from the ODWC Standardized Sampling Procedures (SSP) data-
set. This dataset contains abiotic, biotic, and descriptive data for all 
impoundments and species sampled and managed by the ODWC. 
Data were collected in accordance with the ODWC SSP Manual. 

The OWRB samples water quality in Oklahoma impoundments 
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Figure 1. Chlorophyll-a (a), salinity (b), dissolved oxygen (DO) 
(c), and pH (d) range and location of study impoundments 
adapted from the Beneficial Use Monitoring Program Nutrient 
Status figure in Lakes of Oklahoma.
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annually. Impoundments are sampled four times over a ten-month 
period (usually October through the following July) to account for 
seasonal variation. Either the Y.S.I. 6-series or the EXO2 sonde 
(Yellow Springs Instruments, Inc., Yellow Springs, Ohio) was 
used to collect data for parameters including temperature, baro-
metric pressure, dissolved oxygen (DO), DO percent saturation, 
pH, specific conductivity, salinity, depth, oxidation-reduction 
potential, total dissolved solids, and resistivity. Turbidity values 
were measured with a HACH 2100Q portable turbidimeter (Hach 
Co., Loveland, Colorado). Secchi depth measurements were taken 
using a Secchi disk. To determine cholorophyll-a concentrations, 
surface samples were collected, filtered, and ground at the OWRB 
laboratory according to their standard methods and sent to a con-
tract laboratory for analysis (OWRB 2016b). Chlorophyll-a (mg 
m–3), average turbidity (NTU), average Secchi (cm), salinity (ppt), 
pH, oxidation-reduction potential (mV), and DO (mg L–1) values 
were used for the purposes of this project. Specific conductivity 
was not used due to its high correlation (r > 99%) with salinity. 
These data were available as a mean value for each impoundment, 
which was necessary to satisfy the design of this study’s analysis. 
Acceptable ranges for the survival of most fish species include 
at least 2 mg L–1 for DO and an optimal pH between 6.5 and 8.2 
(MTU 2018). Turbidity and Secchi measurements can vary great-
ly between impoundments and seasons and can affect species dif-
ferently depending upon a species reliance on sight versus other 
senses. Maximum salinity tolerance for largemouth bass, crappie, 
and channel catfish adults is approximately 12, 5, and 10 ppt, re-
spectively (Stuber et al. 1982, Edwards et al. 1982, and McMahon 
and Terrell 1982). 

Although the BUMP program monitors water quality at many of 
the study impoundments annually, some are not sampled as often, 
and BUMP data were available for each impoundment in the study 
from 2006 to 2016. Data for large impoundments were reported in 
regions, which were composed of multiple sampling sites. Available 
data were presented as an average for the impoundment (or region 
of the impoundment) dependent on size. In order to avoid calcu-
lating a total mean from these regional means, the furthest down-
stream (or dam adjacent) region was used on larger impoundments. 

Mean Wr were calculated for each species by impoundment us-
ing the SSP dataset to identify any potential geographic trends in 
the data. Black crappie and white crappie were pooled into one cat-
egory because both species are commonly managed as a group in 
Oklahoma. Largemouth bass were primarily sampled in the spring, 
whereas crappie and channel catfish were primarily sampled in 
fall and late summer, respectively. This could result in higher Wr 
means for largemouth bass due to the presence of enlarged gonads 
during the spawning season. Few publications address sample-size 

requirements for calculating Wr estimates, but Quist et al. (2009) 
suggested a n of at least 100 individuals for the calculation of Wr 
when density data are not available. Wege and Anderson (1978) 
recommended a n of 10 to 20 largemouth bass in impoundments 
with densities greater than 50 bass ha–1 and a n greater than 20 
for impoundments with lower densities. Recommended minimum 
n for populations range from 5 to 50 (Brown and Murphy 1996, 
Brouder et al. 2009). For the Oklahoma SSP dataset, the n for some 
species were low (<20) for some impoundments, but due to the 
wide geographic scope of this project, all available data were used. 
Mean Wr was calculated for each fish greater than the minimum 
lengths for each species (150, 100, and 70 mm for largemouth bass, 
crappie, and channel catfish, respectively) recommended for the 
Wr equation by Neumann et al. (2012). Data for each species were 
not present for all study impoundments; largemouth bass data was 
present for 97 impoundments, crappie for 85 impoundments, and 
channel catfish for 77 impoundments. 

Multivariate techniques have been used extensively to analyze 
water-quality data and can also aid in the determination of spatial 
differences due to natural and anthropogenic factors (Wunderlin 
et al. 2001, Singh et al. 2004, Shrestha and Kazama 2007, Shrestha 
et al. 2008). By using cluster analysis (CA) as an exploratory ex-
ercise, impoundments can be grouped into classes based on the 
similarities and differences of factors that relate to those impound-
ments (Singh et al. 2004). Discriminant analysis (DA) requires an 
initial number of groups and assigns objects into these pre-defined 
groups according to like properties (Wunderlin et al. 2001, Singh 
et al. 2004, Shrestha and Kazama 2007, Shrestha et al. 2008). 

A combination of hierarchical agglomerative CA and DA 
techniques following Singh et al. (2004) were used to classify im-
poundments based on BUMP data. An outlier analysis was used 
to remove impoundments based on both water-quality parameters 
and mean Wr values, which addressed the problem of resulting 
CA classes with too few impoundments. Also, DA cannot be run 
if a grouping contains fewer objects than the total number of ex-
planatory variables (in this case seven) (XLSTAT 2018). Cluster 
analysis was performed on standardized water-quality data using 
the Ward’s method with Euclidian distance to measure dissimilar-
ity (Singh et al. 2004). This evaluated distances between objects, 
grouping objects that minimized the agglomeration criterion until 
each of the objects were clustered. The resulting truncated dendro-
gram was used to determine the number of classes after truncation 
(XLSTAT 2018).

Spatial DA was then performed on raw water-quality data 
(composed of seven parameters) after grouping into three classes 
that were acquired through CA using the standard, forward, and 
backward stepwise modes. The class (clustered) was the grouping 



Water Quality Impact on Fish Relative Weight Griffin et al.  138

2020 JSAFWA

(dependent) variable and the water-quality parameters were the 
independent variables (Singh et al. 2004). The analysis created a 
discriminant function for each group, using this equation:

f(Ci) = ki + ∑ nj = 1wijpij

where i is the number of classes (C), the constant for each class is 
ki, the number of parameters used to classify a data set into a given 
class is n. In this case, n represented the number of parameters 
used to allocate a measure from an impoundment into a particular 
class. Discriminant analysis assigns the weight coefficient (wj) to a 
given selected parameter (pj) (Wunderlin et al. 2001, Singh et al. 
2004). Discriminant analysis allows for considerable data reduc-
tion, retention of parameters with significant influence, and added 
information over factor analysis and principal components anal-
ysis when evaluating spatial differences between locations (Wun-
derlin et al. 2001, Singh et al. 2004, Shrestha et al. 2008).

Mean Wr was then regressed onto the DA factor axes to identify 
one or more factors from the DA that might facilitate the predic-
tion of mean Wr for a given species within impoundments. This 
analysis used multiple explanatory variables from water-quality 
data to model a quantitative dependent variable (mean Wr), which 
allowed for the measurement of the explanatory power of water- 
quality parameters (Sliva and Williams 2001, XLSTAT 2018). 
Goodness of fit was evaluated by plotting values predicted against 
observed values (not shown). Significance for all statistical tests in 
the study was set at P = 0.05.

Results
Variation in mean Wr across the study area was not as high 

as expected (Table 1). Although means were consistent for each 
species, a high range was apparent for each class and statewide, 
suggesting there were differences in fish condition among some 
impoundments. The SD of Wr for largemouth bass was smaller 
among the three classes and statewide when compared to crappie 
and channel catfish (Table 1).

The CA resulted in assignment of each impoundment into 
one of three classes. In all three DA modes (standard, forward, 
and backward stepwise), chlorophyll-a (62%), salinity (68%), pH 
(74%), and DO (66%) exhibited strong positive correlation with 
the first axis (F1). Average secchi depth (-51%) was negatively cor-
related. Chlorophyll-a (-68%) had a strong negative correlation 
with the second axis (F2), while oxidation-reduction potential 
(52%) had a moderate positive correlation (Figure 2). Bartlett’s test 
for eigenvalue significance showed that the first two axes were sig-
nificant (P < 0.001), and the percentage of variance explained by 
those axes was 100% across all modes. In standard stepwise mode, 
F1 explained 83% of the classifications, while F2 encompassed the 
remaining 17% (Figure 2). There was minimal variation in the re-

classification of the impoundments and the percent correct of well 
classified impoundments (Table 2), with the same percent correct 
classification regardless of DA mode. Cross-validation resulted in 
90% total correct classification across all modes, whereas 11 of 108 
impoundments were reclassified. Forward and backward stepwise 
modes produced identical results. Summary statistics for each 
class and statewide for the four most influential water-quality pa-
rameters are found in Table 3. 

Box and whisker plots of the four most influential discriminat-
ing parameters identified by DA (standard stepwise mode) were 
created to visualize patterns associated with variation in water 
quality between classes (Figure 3). A large increase was observed 
from classes 1 and 2 to class 3 for chlorophyll-a and salinity. Both 
DO and pH gradually increased progressing from classes 1–3. 

Class-1 impoundments, which were located primarily in east 
central and southeastern Oklahoma, had some of the lowest sa-
linities and pH values in the dataset. Class-2 impoundments were 
spread across the state, with the largest concentration in central 
Oklahoma. Mid-range pH and mid- to low-range salinity values 
best describe this class. Class-3 impoundments exhibited higher 
salinity and pH values (Figure 4). Salinity and pH appeared to 
be distributed on a southeast to northwest gradient (low to high) 
across the study area. The distribution of chlorophyll-a and DO 
was erratic and did not appear to have any resemblance to this 
pattern (Figure 1). Chlorophyll-a had the highest variance in SD 
between the classes (6.54–16.60), but the remaining variables 
showed little variation (Table 3). The cluster of Class-3 impound-
ments is well discriminated on the factor axes, while the class-1 
and -2 clusters showed some overlap (Figure 5). All modes of DA 
indicated the importance of DO, pH, salinity, and chlorophyll-a in 
the classification of impoundments. 

The multiple regression analysis resulted in low R2 values for 

Table 1. Summary statistics for the relative weight (Wr ) of each study species (black and 
white crappie combined) according to discriminant analysis classifications for 108 Oklahoma 
impoundments.

Largemouth bass Crappie Channel catfish

Class n min
Mean
(SD) max min

Mean
(SD) max min

Mean
(SD) max

 1 41 78 92
(6)

107 80 94
(9)

120 81 92
(13)

147

 2 58 80 97
(8)

129 82 96
(11)

139 66 88
(8)

104

 3 9 92 98
(4)

107 66 91
(12)

105 76 86
(8)

98

 All 108 78 95
(7)

129 66 94
(10)

139 66 89
(10)

147
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each species (0.02, 0.01, and 0.11 for largemouth bass, crappie, and 
channel catfish, respectively), indicating that the water-quality pa-
rameters used did not explain variation in Wr very well on their 
own. The only significant result for the standardized coefficients 
was for channel catfish (-0.25), although the effect of the F1 vari-
able on channel catfish Wr was weak at best (Table 4). 

Discussion
Studies have found that water-quality parameters can have 

an effect on mean Wr (e.g., Chu et al. 2015). However, we were 
unable to relate these differences to measurable changes in mean 
Wr of four sportfish species in Oklahoma impoundments despite 
water-quality differences found among the impoundments. The 
means for each species were relatively typical and fit well with 
the assumption that a fish with Wr of 90 or more is a healthy fish 
(Stahl and Harper 2008). Overall consistency in mean Wr for each 
species within an impoundment class may have contributed to the 
lack of relation found with water quality. Changes in spatial scale, 
evaluation of different size classes of the same species, or possibly 
the use of a species that exhibits higher mean variation could result 
in a more complete model. Additional explanatory variables are 
also likely needed to benefit any future work including land use/
land cover, surface geology, drainage basin size, variation in im-
poundment surface area, number and abundance of forage species 
present, angling effort, and habitat evaluation. Data representing 
many of these variables were not accessible to us or obtainable 

Figure 2. Ordination diagrams depicting results for the standard, forward stepwise, and backward 
stepwise discriminant analysis of water quality variables.

Table 2. Confusion and cross-validation matrix totals showing the percent correct classified 
observations for each type of discriminant analysis by class.

Confusion matrix classes 1 2 3 Total % correct

Standard DA mode

1 38 5 0 43 88.37%

2 3 51 1 55 92.73%

3 0 2 8 10 80.00%

Total 41 58 9 108 89.81%

Stepwise (forward) DA mode

1 38 5 0 43 88.37%

2 4 50 1 55 90.91%

3 0 1 9 10 90.00%

Total 42 56 10 108 89.81%

Stepwise (backward) DA mode

1 38 5 0 43 88.37%

2 4 50 1 55 90.91%

3 0 1 9 10 90.00%

Total 42 56 10 108 89.81%
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Table 3. Summary statistics for the four most influential water quality parameters according to the 
discriminant analysis classifications for 108 Oklahoma impoundments.

Classes (n)

Parameter
1

(41)
2

(58)
3

(9 )
All

(108 )

Chlorophyll-a (mg m–3 )

     Min 1.9 3.0 15.6 1.9

     Mean
     (SD)

12.9
(8.5)

14.2
(6.5)

38.8
(16.6)

15.8
(11.0)

     Max 45.0 31.0 60.6 60.6

Turbidity (NTU)

     Min 2 3 7 2

     Mean
     (SD)

12
(15)

29
(32)

20
(15)

22
(27) 

     Max 96 143 53 143

Secchi (cm)

     Min 26 8 19 8

     Mean
     (SD)

101
(51)

56
(34)

48
(25)

72
(46)

     Max 240 195 98 240

Salinity (ppt)

     Min 0.01 0.02 0.29 0.01

     Mean
     (SD)

0.10
(0.11)

0.17
(0.11)

0.51
(0.18)

0.17
(0.16)

     Max 0.71 0.58 0.74 0.74

pH

     Min 6.28 7.16 7.76 6.28

     Mean
     (SD)

7.36
(0.43)

7.86
(0.27)

8.31
(0.24)

7.71
(0.45)

     Max 8.15 8.27 8.54 8.54

Oxidation reduction potential (mV )

     Min 44.1 173.1 149.9 44.1

     Mean
     (SD)

283.7
(106.8)

345.8
(61.5)

286.4
(79.8)

317.3
(87.8)

     Max 450.0 471.0 422.2 471.0

Dissolved oxygen (mg L–1 )

     Min 3.68 5.81 6.90 3.68

     Mean
     (SD)

7.36
(1.09)

7.93
(0.77)

8.42
(1.18)

7.42
(1.20)

     Max 8.43 9.56 10.37 10.37

Figure 3. Spatial variations for the four most influential water quality parameters: Chlorophyll-a 
(a), salinity (b), dissolved oxygen (DO) (c), and pH (d) in Oklahoma impoundments. Total number of 
impoundments in each class are listed in parentheses.
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within a timely manner due to the scale of the study area. Also, 
the methods used in this study would potentially need revision in 
order to accommodate additional explanatory variables due to the 
limitations of DA.

Modelling the potential link between water quality, additional 
explanatory variables, and mean Wr could inform decision-making 
for fisheries managers based on contributing explanatory factors 
rather than geographic location alone. For example, Lake Etling, 
located in far northwestern Oklahoma, clustered with impound-

Figure 4. Spatial discriminant analysis classifi-
cation of 108 Oklahoma impoundments.

Figure 5. Impoundment class centroids and 
clusters with respect to discriminant analysis 
axes 1 and 2.

Table 4. Standardized coefficients (Std Coef), SE, and P-values (in parentheses) for the discriminant 
analysis factor axes by species.

Bass Crappie Channel Catfish

Std  coef SE Std coef SE Std coef SE

F1 0.025 0.101 (0.802) 0.067 0.110 (0.546) –0.253 0.110 (0.024)

F2 –0.146 0.101 (0.152) –0.040 0.110 (0.716) –0.204 0.110 (0.068)
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ments in central and eastern Oklahoma based on water-quality 
parameters rather than other impoundments in western Oklaho-
ma. This similarity is likely the result of geologic substrate, as Lake 
Etling is located on Paleozoic sandstones that lack halide deposits. 
It may be questioned, then, whether Lake Etling should be man-
aged with the expectation of fish achieving a Wr akin to nearby 
impoundments or rather to eastern impoundments. 

We approached this study as an exploratory exercise and believe 
the outcome, although not as successful as expected, still provides 
valuable information. This serves as a starting point for future 
work, helping to adjust and refine the approach and variables nec-
essary for impoundment classification and its correlation to Wr. 
Even though Wr might not be the best differentiator of system pro-
ductivity, ODWC managers could find utility in the comparison of 
other standard population metrics (such as length frequency, age 
and growth, and mortality) between impoundment classes. This 
would create the potential to base management strategies on a lim-
nologic approach, rather than a geographic one. Artificial and of-
ten dynamic geopolitical boundaries have a tendency to influence 
management approaches by resource managers. Removing the 
geopolitical influence may allow for more ecological based man-
agement strategies to be utilized from a classification system like 
the one developed in this study. A class-level goal for a particular 
fisheries population metric might serve a better purpose and prove 
more beneficial to a manager than a statewide goal or benchmark 
(i.e., average statewide growth rate for channel catfish). Some ex-
amples that utilize study species include: a class of impoundment 
in which crappie growth could benefit from the introduction of 
saugeye (Sander canadensis x S. vitreus), or differentiation between 
classes with impoundments that can sustain a higher stocking den-
sity of channel catfish while retaining adequate growth (Boxruck-
er 1992, Patterson 2014, Carl 2017). These impoundment classes 
could serve as a valuable tool for the continued evaluation of best 
management practices moving into the future.
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