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Abstract: The gray bat (Myotis grisescens) is a cave-obligate species that has been listed as federally endangered since 1976, following population declines 
from human disturbance at hibernation and maternity caves. However, with cave protection, most gray bat populations have increased. As part of a 
project examining bat use of transportation structures as day-roosts, we continuously acoustically monitored 12 riparian sites within the Clinch River 
Watershed of southwest Virginia from March through November, 2018–2020. We used 15 different landscape and weather-related variables in gener-
alized linear mixed models to determine factors influencing gray bat presence and activity. Seasonal activity patterns were similar among years, but the 
number of nightly gray bat calls increased with each passing year, consistent with positive population trends observed at winter hibernacula. Year and 
average nightly temperatures were positively correlated with gray bat activity, as was, unexpectedly, average nightly wind speed. Total nightly precip-
itation, distance to the nearest hibernaculum in Tennessee, percent forested area within 2 km of a detector, mean elevation within 2 km of a detector, 
detector type, and amount of urban development within 2 km of a detector were negatively correlated with gray bat activity. Our findings show where 
and when gray bat presence is likely in southwest Virginia, thereby helping managers avoid negative impacts from activities such as bridge repair or 
replacement and planning of future monitoring to track population trends.
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The gray bat (Myotis grisescens) has been listed as endangered 
under the U.S. Endangered Species Act since 1976, after popula-
tions were reduced due to anthropogenic disturbances at summer 
and winter caves (Tuttle 1979). Unlike many cave-dwelling bat 
species, gray bats seem largely unaffected by Pseudogymnoascus 
destructans, the fungal pathogen that causes White-nose Syn-
drome (WNS; Wibbelt et al. 2010, Bernard et al. 2015, Powers et 
al. 2016). The population appears to be stable or increasing due 
to fungal resistance, potential niche release from declines in com-
peting species, such as the little brown bat (Myotis lucifugus), and 
long-term protection of caves (Jachowski et al. 2014, Powers et al. 
2015, Powers et al. 2016).

During non-hibernating months gray bats day-roost in caves 
or cave-like structures and forage over large streams and rivers in 
the mid-South and lower Midwest. The northeastern-most sum-
mer range extends into the upper Tennessee River Basin of south-
west Virginia (Tuttle 1979, Keeley and Tuttle 1999, Chapman et al. 

2007). There is high interest in more detailed understanding of 
gray bat distribution and relative abundance as they day-roost or 
night-roost in transportation structures, such as bridges (Keeley 
and Tuttle 1999, Johnson et al. 2002, Powers et al. 2016). Prelimi-
nary work in the Clinch–Powell river system in southwestern Vir-
ginia suggested that gray bat activity is concentrated within the 
Clinch and Powell watersheds in proximity to a hibernaculum in 
Hawkins County, Tennessee, and a maternity roost in Bristol on 
the Virginia–Tennessee border (Taylor et al. 2022). 

Preceding WNS, presence of listed bat species was confirmed 
via mist-netting. However, with population declines of many spe-
cies and subsequent low detection probability via mist-netting 
(Nocera et al. 2019a, Deeley et al. 2021), the United States Fish and 
Wildlife Service (USFWS) developed acoustic monitoring proto-
cols for the Indiana bat (Myotis sodalis) and northern long-eared 
bat (Myotis septentrionalis) to guide  regulatory assessment (Arm-
strong et al. 2022). Acoustic monitoring offers a cost-effective 
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method to determine the local bat species assemblage and identi-
fy foraging habitat (Ford et al. 2005, Ford et al. 2016). Long-term 
acoustic sampling in multiple locations can also provide insights 
on seasonal and landscape variation in activity patterns (Johnson 
et al. 2010a, Johnson et al. 2010b, Nocera et al. 2020, Gorman et 
al. 2021, Taylor et al. 2022). With broader determinations of land-
scape-level distribution and abundance managers can assess risk 
both spatially and temporally beyond where survey work occurs 
(Barr et al. 2021). Long-term acoustics monitoring surveys pre- 
and post-WNS have revealed the relationship between average 
activity levels and relative population size for many bat species 
(Jachowski et al. 2014, Nocera et al. 2019b). 

In 2018, we began a multi-year assessment of gray bat activity 
in the Clinch River portion of the upper Tennessee River water-
shed to better understand relationships of activity to landscape 
and weather covariates and to assess year-to-year variation in ac-
tivity to inform monitoring needs for the Virginia Department 
of Transportation (VDOT). Because gray bats are summer cave-
obligates that forage along river systems, we predicted that many 
landscape-level covariates important to other bat species, such as 
forest coverage, developed land, etc., would show equivocal re-
lationships, whereas relationships to weather variables would be 
similar to the responses of other bat species. Furthermore, owing 
to the nearby presence of the gray bat maternity colony and win-
ter hibernacula in Tennessee, we expected that seasonal patterns 
of activity would be related to proximity to the maternity colony 
from late spring through summer and to the hibernacula in fall. 

Methods 
Acoustic Monitoring

We selected sites based on VDOT’s interest in a series of bridg-
es along the Clinch River and tributaries in the Ridge and Valley 
and Appalachian Plateau (Cumberland Mountains section) phys-
iographic provinces. Generally, along the Clinch River, the Ridge 
and Valley is characterized by forested mountains with moderate 
to steep side-slopes and broad valleys cleared for pasture and hay 
production (Kniowski and Ford 2018). The Appalachian Plateau 
is >90% forested and is characterized by steep slopes and narrow, 
sheltered valleys (Kniowski and Ford 2018). At each site, we placed 
a SM-4 zero-crossing/frequency division acoustic detector with 
an SMM-U1 omni-directional microphone (Wildlife Acoustics, 
Maynard, Massachusetts) along watercourses near bridges, as de-
scribed by Coleman et al. (2014) and Austin et al. (2018). However, 
for five of our sites in 2020, we deployed a SM-4 full-spectrum 
detector provided by the Tennessee Valley Authority for use in the 
region (sites 00, 02, 03, 04, and 05; Figure 1). We mounted mi-
crophones on 3-m poles above vegetative clutter. At each survey 

site, we operated detectors continuously two hours before sunset 
to two hours after sunrise from March to November 2018–2020. 
For detector settings, we used signal detection parameters of 
8–120 kilohertz (kHz) minimum and maximum frequency range 
and 2–500 milli seconds (ms) minimum and maximum length of 
detected pulses. We processed downloaded acoustic call files using 
the USFWS and the U.S. Geological Survey (USGS)-approved Ka-
leidoscope version 5.1, classifier version 1.5.9 (Wildlife Acoustics, 
Maynard, Massachusetts) for species-specific identification with 
default signal parameters (two pulse minimum and maximum in-
ter-syllable gap of 500 ms). We set the possible species presence for 
the area as: Virginia big-eared bat (Corynorhinus townsendii vir-
ginianus), big brown bat (Eptesicus fuscus), eastern red bat (Lasi-
urus borealis), hoary bat (Lasiurus cinereus), silver-haired bat (La-
sionycteris noctivagans), gray bat, eastern small-footed bat (Myotis 
leibii), little brown bat, northern long-eared bat, Indiana bat, and 
tricolored bat (Perimyotis subflavus). At the site level, we visually 
confirmed that at least one call was classified as gray bat based on 
sonogram shape and frequency characteristics matching those in 
our call library. We accepted nightly counts of all individual call 
files identified as gray bat irrespective of the nightly maximum 
likelihood estimator scores for the watershed-wide monthly activ-
ity level modeling (Nocera et al. 2020).

Statistical Analysis

We used the sum of nightly gray bat call files as our response 
variable and evaluated 15 candidate covariates derived from land-
scape or nightly weather variables. The predictor variables we evalu-
ated for our models included site (used as a random effect), latitude, 
distance to nearest known significant hibernaculum, and distance 
to nearest known maternity colony. We identified stream order for 
each bridge site as an approximation of stream width using the Na-
tional Hydrography Dataset layer (U.S. Environmental Protection 
Agency 2019) in ArcGIS Pro (Esri, Inc., Redlands, California). Be-
cause our detectors were placed along stream banks, we did not 
consider distance to stream as a predictor. To determine surround-
ing landcover types, we used The Nature Conservancy’s Terrestrial 
Habitat Map for the Northeast U.S.  (Ferree and Anderson 2015). We 
combined all deciduous, conifer, and mixed forest type categories 
into a ‘forest’ category. We also combined shrub/scrub, herbaceous, 
hay/pasture, and cultivated crops categories into a ‘low vegetation’ 
category, and low, medium, and high intensity development catego-
ries into one ‘developed’ category. We used ArcGIS Pro to calculate 
percentage of these landcover categories within a 2-km radius of 
each detector. To calculate the mean cave density within a 2-km ra-
dius of each detector, we used the Appalachian Landscape Conser-
vation Cooperative’s (ALCC) dataset of known caves within 20-km2 
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grid cells (Doctor et al. 2016). We assumed that caves occurred only 
within areas defined as karst by a USGS karst data layer (Weary 
and Doctor 2014). We then merged the karst layer with the ALCC’s 
20-km2 grid maps layer and calculated mean cave density of each 
karst portion of a grid cell by dividing the number of caves in the 
grid cell by the portion of karst area within the grid cell and aver-
aged the mean cave density values that fell within a 2-km radius buf-
fer around each detector. We calculated the minimum, maximum, 
and mean elevation (m) within a 2-km radius buffer around each 
detector in ArcGIS Pro using the U.S. Geological Survey (2020) lay-
er. To determine total nightly precipitation (mm), average nightly 
windspeed (kmph), and average nightly temperature (C), we ac-
quired weather data from nearest local weather stations through 
the METeorological Aerodrome Reports (METARs) for the dates in 
which our detectors were operating (Iowa Environmental Mesonet 
2020). We also used the year (2018, 2019, and 2020) as a predicting 
variable, and the day of year (or Julian day), which we transformed 
by taking the cosine of radians creating a circular variable (i.e., day 1 
follows day 365). Finally, to help account for and quantify the effect 
on detection resulting from the change in equipment type at five of 
our sites in 2020, we added a detector type predictor (full-spectrum 
versus zero-crossing).

We tested for correlation among candidate predictor variables 
using the corrplot package in R (R Core Team 2020, Wei and Simko 
2021) and determined any variable correlations < |0.6| as acceptable. 

Variable pairs that exceeded the limit bounds were not combined in 
a model. We centered and scaled continuous variables.  We ran 47 
generalized linear mixed models with negative binomial distribu-
tions and log link functions including single-variable models, sev-
eral a priori multi-variable models, and a null (no covariate) model 
using the lme4 package in R (Bates et al. 2015, Jorge et al. 2021). 
We ranked the models based on the Akaike Information Criterion 
for small sample sizes (AICc), and we considered models within 
2 ΔAICc units as competing top models (Mazerolle 2020, Jorge et 
al. 2021). Using competing models, we calculated model-averaged 
predictions using AICc weights (Burnham and Anderson 2002). 

Results
We recorded bat activity at all 12 sites, 2018–2022. We amassed 

2483 detector nights between 3 April and 3 November in 2018, 
2498 detector nights between 10 March and 8 November in 2019, 
and 2488 detector nights between 6 March and 19 November in 
2020. Gray bats comprised 24.2% (403,106) of the total call files 
(1,668,245) identified to species. We found an increasing number 
of gray bat calls each year: 52,438 in 2018, 96,897 in 2019, and 
253,744 in 2020 (Table 1). We also detected the remaining 11 spe-
cies expected for the area (Table 1).

We had five competitive models explaining variation in gray bat 
call counts (Table 2). The fifth-ranked model was the only compet-
ing model to include stream order and mean cave density (Table 2), 
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Figure 1. Known gray bat maternity colony roost, nearest known hibernaculum, and acoustic survey locations (numbers within survey location markers refer to site ID) surveyed in the Clinch River Watershed 

from March to November in 2018–2020.
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Table 3. Individual parameter estimates (β) from the four top-ranking models predicting gray bat 

acoustic activity using data collected from 12 sites in the Clinch River Watershed, southwest Virginia 

from March to November in 2018–2020. 

Model 1 Model 2 Model 3 Model 4

Parameter a β SE β SE β SE β SE

Intercept 3.34 0.28 3.37 0.28 3.38 0.3 3.36 0.3

DT –1.76 0.11 –1.76 0.11 –1.76 0.11 –1.76 0.11

wind 0.08 0.03 0.08 0.03 0.08 0.03 0.08 0.03

rain –0.11 0.03 –0.11 0.03 –0.11 0.03 –0.11 0.03

tmp 0.61 0.04 0.61 0.04 0.61 0.04 0.61 0.04

hib –1.05 0.26 –0.8 0.27 –0.59 0.25 –0.79 0.25

year 0.26 0.05 0.26 0.05 0.26 0.05 0.26 0.05

Jul –1.06 0.08 –1.06 0.08 –1.05 0.08 –1.05 0.08

forest –0.47 0.26 –0.39 0.26 – – – –

elv –0.43 0.22 – – – – –0.37 0.25

dev – – –0.42 0.23 –0.42 0.25 – –

a. Parameters include DT: detector type; wind: average nightly windspeed (kmph); rain: total nightly 
precipitation (cm); tmp: average temperature (C); hib: distance to hibernaculum (km); forest: % forested 
area within a 2-km radius; Jul: Julian day; elv: average elevation within a 2-km radius; dev: % developed area 
within a 2-km radius.

Table 2. Model comparisons of candidate generalized linear mixed models predicting gray bat 

acoustic activity from 12 sites in the Clinch River Watershed, southwest Virginia from March to 

November in 2018–2020. Included are model parameters for each model, the number of parameters 

(K), the difference in each model’s Akaike’s Information Criterion (with correction for small sample 

size, AICc) and the AICc score of the top-ranking model (ΔAICc), AICc weight (Wt), and the model log-

likelihood (LL). Other than the intercept-only model, results for models with Wt <0.01 are omitted.

Model Parametersa K      ΔAICc Wt LL

hib, forest, mean-elv, year, tmp, rain, wind, Jul, DT 12 0.00 0.19 –24,581.73

hib, forest, dev, year, tmp, rain, wind, Jul, DT 12 0.41 0.15 –24,581.94

 hib, dev, year, tmp, rain, wind, Jul, DT 11 0.47 0.15 –24,582.97

hib, mean-elv, year, tmp, rain, wind, Jul, DT 11 0.94 0.12 –24,583.21

hib, MCD, forest, dev, mean-elv, year, tmp, rain, wind, SO, Jul, DT 15 1.77 0.08 –24,579.60

hib, MCD, year, tmp, rain, wind, Jul, DT 11 2.46 0.05 –24,583.97

hib, MCD, forest, year, tmp, rain, wind, Jul, DT 12 2.65 0.05 –24,583.06

hib, MCD, forest, mean-elv, year, tmp, rain, wind, SO, Jul, DT 14 2.76 0.05 –24,581.11

hib, mat, MCD, forest, dev, mean-elv, year, tmp, rain, wind, SO, Jul, DT 16 2.81 0.05 –24,579.12

hib, karst, forest, mean-elv, year, tmp, rain, wind, SO, Jul, DT 14 2.84 0.05 –24,581.15

hib, MCD, forest, year, tmp, rain, wind, SO, Jul, DT 13 3.87 0.03 –24,582.66

hib, mat, karst, forest, mean-elv, year, tmp, rain, wind, SO, Jul, DT 15 4.34 0.02 –24,580.89

year, tmp, rain, wind, Jul, DT 9 4.81 0.02 –24,587.15

forest, year, tmp, rain, wind, Jul, DT 10 6.72 0.01 –24,587.10

Intercept only 3 1066.28 0.00 –25,123.89

a. Parameters include DT: detector type (zero-crossing or full spectrum); Jul: Julian day; hib: distance 
to the nearest known hibernaculum (km); mat: distance to the nearest known maternity colony (km); tmp: 
average nightly temperature (C); rain: total nightly precipitation (cm); wind: average nightly wind speed 
(kmph); SO: stream order. Parameters within a 2-km radius include forest: % forested area; MCD: mean 
cave density; max-elv: maximum elevation (m); mean-elv: mean elevation (m); dev: % developed area; 
karst: % karst; two additional variables examined but not included in models shown include % area with low 
vegetation and minimum elevation.

Figure 2. Model-averaged predicted nightly gray bat acoustic activity from sites within the Clinch 

River Watershed surveyed from March to November in 2018–2020 by Julian day and year. (A) 12 sites 

including five locations that had full spectrum detectors in 2020. (B) only including the seven sites 

within the Clinch River Watershed that had zero-crossing detectors. 

Table 1. Number of bat calls recorded in the Clinch River Watershed, southwest Virginia from March 

to November in 2018–2020 by species and year across all 12 surveyed sites. 

Species 2018 2019 2020

Virginia big-eared bat (Corynorhinus townsendii virginianus) 74 173 798

Big brown bat (Eptesicus fuscus) 26,953 43,189 84,886

Eastern red bat (Lasiurus borealis) 1426 3523 9573

Hoary bat (Lasiurus cinereus) 24,827 15,779 71,236

Silver-haired bat (Lasionycteris noctivagans) 99,120 122,859 79,241

Gray bat (Myotis grisescens) 52,435 96,897 253,774

Small-footed bat (Myotis leibii) 72 220 107

Little brown bat (Myotis lucifugus) 14,098 19,247 46,333

Northern long-eared bat (Myotis septentrionalis) 206 378 192

Indiana bat (Myotis sodalis) 547 10,498 2829

Evening bat (Nycticeius humeralis) 3992 9171 18,662

Tricolored bat (Perimyotis subflavus) 113,695 178,477 312,817

both of which had P > 0.05, and this model had weight < 0.10. 
Therefore, we model-averaged predictions only from the top four 
models. Other predictors were significant in the competitive mod-
els (except for percent developed area (P ≥ 0.07), mean elevation 
(P ≥ 0.05), and percent forested area (P ≥ 0.07). Average nightly 
temperature, average nightly windspeed, and year had positive re-
lationships to gray bat activity (Figure 2, Figure 3). Distance from 
hibernaculum, total nightly precipitation, percent developed area, 
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mean elevation, percent forested area, detector type, and Julian day 
had negative relationships to gray bat activity (Figure 2, Figure 4). 
Of the 11 variables included in competing models, detector type, 
Julian day, distance to hibernaculum, and nightly temperature had 
stronger effects (≥ | 0.61 |; Table 3).

Discussion
Gray bat seasonal activity patterns were similar between years, 

yet activity increased across years. This was expected due to the 
benefits of cave protection, apparent resistance to WNS, and pos-
sibly niche release from competing WNS-impacted bat species 
(Powers et al. 2015, 2016). Assuming no major changes to habi-
tat quality or presence of new unknown maternity caves, we be-
lieve the three-fold increase from 2018 to 2020 cannot be solely 
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Figure 3. Model-averaged predicted nightly gray bat acoustic activity from the Clinch River 

Watershed from 12 sites surveyed from March to November in 2018–2020 with respect to weather 

variables. (A) average nightly temperature (degrees C), (B) average nightly windspeed (kmph), 

and (C) total nightly precipitation (mm).

attributable to population growth, based on hibernacula counts. 
Although I ndiana and northern long-eared bats did not show an 
increase over time, WNS-impacted little brown bats and tricol-
ored bats did. This increase may be attributable to the full-spec-
trum detectors deployed at five sites in 2020 (sites 00–05; Figure 1). 
Compared to zero-crossing detectors full-spectrum detectors 
have higher sensitivity and produce higher quality call recordings, 

Figure 4. Model-averaged predicted nightly gray bat acoustic activity from the Clinch River Watershed 

from 12 sites surveyed from March to November in 2018–2020 with respect to landscape variables. 

(A) Percent forested-area within 2-km radius, (B) Percent developed-area within 2-km radius, (C) mean 

elevation within 2-km radius, and (D) distance (km) to nearest known hibernaculum in Tennessee.
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potentially allowing detection of more calls and enabling software 
to identify more passes to species-level (Adams et al. 2012; E. Barr, 
USFWS, Marietta, Ohio, unpublished data). Considering these five 
survey locations were central to the largest gray bat aggregation in 
the region between the maternity site, bachelor caves, and the hi-
bernaculum, an increase in recording sensitivity may have provid-
ed inflated detection numbers. Still, gray bat activity predictions 
for the seven sites with zero-crossing detectors in all three years 
also showed a pattern of yearly activity increases, though not as 
extreme as the sites with full spectrum detectors (Figure 2).

The negative relationship of activity to nightly precipitation and 
positive relationship to temperature were expected. Bat activity 
across most species has been shown to increase with warmer tem-
peratures and decrease with increasing rainfall, likely paralleling 
insect activity (Whitaker and Rissler 1992, Cryan and Brown 2007, 
Ruczyński and Bartoń 2020, Gorman et al. 2021). Bat activity is 
typically negatively related to windspeed (Smith and McWilliams 
2016, Muthersbaugh et al. 2019). We were surprised to find a pos-
itive relationship between gray bat activity and windspeed in our 
models. However, weather data were derived for the general area 
rather than our detector sites, hence windspeed may not have been 
accurately characterized where we surveyed for gray bats as many 
of the riparian corridors were sheltered by adjacent mountains. 
Thus, gray bats might concentrate foraging to narrow river corri-
dors during high wind conditions.

A negative relationship of gray bat activity to distance from the 
hibernaculum was expected. Powers et al. (2016) found that most 
gray bat summer colonies in Virginia are bachelor colonies. In the 
Clinch River Watershed, with potentially abundant resources (in-
cluding caves), males may not forage far from their bachelor caves, 
as observed in northwest Georgia (Johnson et al. 2010b). Our 
data provide no clear evidence for seasonal dispersion within the 
Clinch River Watershed. However, on a larger geographic scale, 
across three additional watersheds, temporal and spatial variation 
of gray bat activity is notable with a northward flow in spring and 
a southern ebb in fall (Taylor et al. 2022). 

To confirm th  e extent of gray bat population growth, methods 
such as multi-year exit hibernacula counts and surveys for addi-
tional, undocumented bachelor caves or maternity sites could be 
employed (O’Shea and Bogan 2003, Powers et al. 2016, Orndorff et 
al. 2019). Taylor et al. (2022) observed gray bats beyond their pre-
sumed range in the New River Watershed in 2019 and 2020 in Vir-
ginia, providing additional evidence of a growing population. This 
population growth may be linked to community effects of WNS, 
whereby the pressures of niche partitioning are relaxed for non-sus-
ceptible species (Jachowski et al. 2014, Powers et al. 2015, Bom-
baci et al. 2021). Beyond potential population growth and spatial 

range expansion, our study suggests that additional work exploring 
trends related to changing climate patterns relative to the onset of 
presence in the spring and the cessation of activity in the fall could 
be beneficial. A better understanding of the duration of presence 
and resulting risk to bats at transportation structures and contribu-
tory landscape and weather factors for potential gray bat day-roost 
or night-roost usage could help agencies such as VDOT minimize 
potential harm from maintenance or replacement actions. 
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