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Abstract: Allegheny woodrat (neotoma magister) populations in the northern and west-
ern limits of the range have been greatly reduced in recent years, increasing the need to
locate and monitor both threatened and seemingly stable populations. We tested the fea-
sibility of predicting areas of suitable habitat for the woodrat in the Daniel Boone Na-
tional Forest (DBNF) by using a Geographic Information System model. Several
themes depicting woodrat habitat variables were overlaid to produce a comprehensive
map displaying likelihood of woodrat occurrence. Logistic regression analysis was used
to determine effect of each habitat variable on woodrat occurrence based on a sample of
394 known woodrat occurrence sites, 511 random sites, and habitat data including
slope, landuse, site geology, forest cover, and locations of forest openings, clifflines,
streams, and roads. The resulting habitat model correctly classified 97% of the 416 in-
dependent woodrat locations at the 0.50 probability level. This habitat model will pro-
vide an efficient, cost-effective method for searching out new woodrat locations, moni-
toring and analyzing previously known locations, managing DBNF to maintain existing
habitat, and restoring previous habitat.
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The Allegheny woodrat was historically distributed from western Connecticut
through Pennsylvania, along the Appalachian Mountains through Kentucky and Ten-
nessee, and into northern Alabama (Poole 1940, Schwartz and Odum 1957). In the
last quarter of the twentieth century this one prevalent mammal began to mysteri-
ously disappear from much of its historic range (Beans 1992). Once healthy popula-
tions in New York, New Jersey, and eastern Pennsylvania have all but vanished in re-
cent years (Beans 1992). Populations in the Virginias, Kentucky, and Tennessee,
however, appear to be stable (Beans 1992). The exact reasons for this reduction in
distribution have not been determined.



Woodrat Habitat Modeling 365

2001 Proc. Annu. Conf. SEAFWA

In Kentucky, the Allegheny woodrat was listed as a species of special concern in
1996 (Ky. State Nature Preserves Comm. [KSNPC] 1996). Current populations are
believed to be stable, although recent woodrat distributions have mainly been studied
in the Daniel Boone National Forest (DBNF) region of eastern Kentucky (Bommar-
ito 1999). Woodrats are widely distributed throughout eastern Kentucky. Distribution
of woodrats in central and western Kentucky has not been studied as extensively as in
the DBNF and eastern Kentucky.

The Allegheny woodrat is usually found in forested ecosystems along clifflines
or in caves (Newcombe 1930, Poole 1940). In DBNF, woodrats inhabit areas with a
high slope, high tree density, fewer hardmast trees with diameter at breast height
(dbh) between 15.1 and 30.0 cm, and a high number of softmast trees with a 0–15 cm
dbh (Bommarito 1999). Balcom (1944) found that woodrat habitat in Pennsylvania
included areas exhibiting high slope, high rock cover, and low basal area of overstory
trees. In West Virginia, Myers (1997) found that in areas of rock outcrops, woodrats
preferred regions with steeper slope, greater width of rock outcropping, fewer small
trees (0.0–15.0 cm dbh), and less leaf litter. Woodrat cave habitat and its related sur-
face habitat have not been studied in detail (Clark and Clark 1994).

A Geographic Information System (GIS) is an effective tool to analyze habitat
requirements of wildlife. GIS technology has been used to analyze many aspects of
habitat for various wildlife species. For example, grizzly bear (Ursus arctos horri-
bilis) distribution, human conflicts, and habitat use have been modeled using a GIS
(Mace and Waller 1996, Waller and Mace 1997). A GIS also has been used to ana-
lyze distribution patterns for Allegheny woodrats (Bommarito 1999) and brown-
headed cowbirds (Molothrus ater; Coker and Capen 1995). Present habitat use ver-
sus historic habitat use has been studied for the Allegheny woodrat (Balcom 1994)
and California condor (Gymnogyps californianus; Stoms et al. 1993). The likelihood
of presence within a habitat was modeled using a GIS for black bears (Ursus ameri-
canus; Clark et al. 1993) and black-tailed jackrabbits (Lepus californicus; Knick and
Dyer 1997). The Allegheny woodrat, with its recent decline, is well suited for more
habitat analysis using GIS.

We had 5 objectives:

1. To digitize a statewide database of known woodrat locations.
2. To acquire habitat attributes for each woodrat location from GIS layers.
3. To build a predictive model of woodrat occurrence using logistic regression

analysis of woodrat location and habitat data.
4. To produce a map depicting probability of woodrat occurrence by applying

the logistic regressions equation to GIS grid layers.
5. To test accuracy of the habitat suitability map using a unique set of woodrat

locations.

This project was funded by the Kentucky Department of Fish and Wildlife Re-
sources (KDFWR) and Easter Kentucky University (EKU). We thank C. Elliott, 
M. Bommarito, T. McFalls (EKU); S. Thomas, D. Vichitbandha, K. Wethington
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(KDFWR); R. Smath, J. Currens (Ky. Geol. Surv.); W. Luhn (DBNF); and G. Ghitter
(Ky. Gap Analysis Program) for their advice and support.

Methods

This study was conducted within the proclamation boundary of the DBNF. In the
first phase of the project, we created a database of the geographic coordinates for most
recorded woodrat locations in the DBNF (hereafter, referred to as woodrat locations).
We obtained records from KDFWR, KSNPC, U.S. Forest Service (USFS), and other
previous woodrat research. The database was compiled using ArcView 3.2 (Environ.
Systems Res. Inst. [ESRI] 1999) and Microsoft Access 2000 (Microsoft Corp. 1999).

We acquired habitat attributes for each woodrat location using data layers for
variables such as slope, location of clifflines, type of landuse, vegetation and forest
cover, age of the stand, distance to nearest road, distance to nearest stream, order of
the nearest stream, and distances to non-forest, agriculture, and human disturbance
patches. We also used a data layer for a variable of possible karst geology (i.e., irreg-
ular limestone formations with sinks, underground streams, and caverns).

Slope, stream, road, landuse, and vegetation coverages were provided by the
Kentucky Natural Resources and Environment Protection Cabinet’s Office of Infor-
mation Services. Distance from each woodrat location to the nearest stream, the
stream’s order, and distance to nearest road were determined through spatial analysis
using the appropriate data layers. Slope coverage contained 7 classes: 0%–2%,
2%–6%, 6%–12%, 12%–20%, 20%–35%, 35%–50%, 50%–100%. The landuse cov-
erage used classes based on Anderson Level II landuse and land cover classification
categories (Anderson et al. 1976) including residential, industrial, cropland and pas-
ture, deciduous forest land, mixed forest land, evergreen forest land, streams and
canals, forested wetland, and strip mines and gravel pits.

Karst geology was the attribute used to represent the likelihood of cave-forming
geology and was derived from the Kentucky Geological Survey’s (KGS) 1:500,000
digital geologic map. We assigned each woodrat location a karst attribute of non-
karst, some karst, or intense karst, based on susceptibility of the underlying geologic
unit to karstification (Ivanovich 2000).

The cliffline, forest type, and stand age data layers were provided by the USFS
and DBNF. We used location of cliffline to determine distance from each woodrat lo-
cation to the nearest cliffline. A cliff was defined as a naturally occurring, continuous
stretch of 3.048 m of vertically exposed rock.

We used the roads layer of represent human disturbance, but several layers de-
picting human disturbance also were generated from the landuse layer. Distance
from each woodrat location to the nearest non-forest patch was measured by creating
a layer of all non-forest polygons from the landuse layer. Non-forest patch layers
were generated for 4 minimum patch sizes of 0.5, 5, 50, and 100 ha. We used the Arc-
View Spatial Analyst Extension to determine distance from each woodrat location to
the nearest non-forest polygon of each size class. We used the same method to deter-
mine distance from the woodrat location to the nearest agricultural patch with a min-
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imum patch size of 0.5, 5, 50, and 100 ha and to the nearest area of human distur-
bance as represented by any Anderson Level I Urban or Built-up Land, Level I Agri-
cultural Land, or any Level II Strip Mine (Anderson et al. 19760).

To compare with habitat attributes of woodrat locations, we generated a set of
511 random locations by matching a random x-coordinate with a random y-coordi-
nate. Random locations were distributed throughout the study area as were woodrat
locations. Habitat attributes for random locations were extracted in the same way
they were for the know woodrat locations.

The extracted habitat data for woodrat locations and the random locations were
compared using univariate statistics. Habitat variables with continuous distribution
were each analyzed using a Wilcoxon ranked sum test (SAS 1990) to test that the
mean values for the woodrat locations were different from the mean values for the
random locations. We analyzed categorical variables using a Chi-Square Goodness-
of-fit test (SAS 1990) to test if the distribution of woodrat locations among categories
was different from the expected distribution as represented by the random locations.

From the database of woodrat locations created in the first phase of this project,
only woodrat records for which a reliable, precise location could be determined were
used to build the habitat model (i.e., locations from an existing field map or with cor-
roborating evidence). Thus, 810 locations were selected. Each of the 810 woodrat lo-
cations was assigned a random number between 0 and 1 in order to create a random
subset of locations. The 394 locations with random numbers �0.5 were used to build
the model. The remaining 416 data points with random numbers �0.5 were used to
test the accuracy of the predictive model.

Relative statistical significance of each habitat variable was compared to the
other variables using logistic regression analysis. The logistic regression analysis
provided and equation to determine Q, the probability of finding suitable woodrat
habitat at any given location using the coefficient and value for each significant vari-
able at that location. Variables deemed to have biological significance to the woodrat
were entered into the analysis. Vegetation, forest type, and understory class variables,
for which sufficient data coverage of the study area did not exist, were not used dur-
ing logistic regression analysis.

To produce the habitat suitability layer, a grid for each significant variable in lo-
gistic regression analysis was produced using the ArcView Spatial Analyst Exten-
sion (ESRI 1999). Each grid had a 30-m pixel size. We determined a probability of
finding suitable woodrat habitat (Q) in each pixel of habitat suitability grid using the
map calculator of the ArcView Spatial Analyst.

To test model accuracy, we calculated percentage of test locations (the 416
woodrat locations not used to build the model) that fell in each of 6 categories of Q
(�50%, 50%–60%, 60%–70%, 70%–80%, 80%–90%, 90%–100% probability).
Chi-square goodness-of-fit analysis was performed on these categories to compare
distribution of test locations to the expected distribution, given the relative area ac-
counted for by each of the probability categories. We also calculated a mean proba-
bility of finding suitable habitat at the test locations. Finally, percentage of test loca-
tions correctly classified based on a given probability level was determined.
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Table 1. Habitat variables (continuous data) for locations used by Allegheny
woodrats and for random locations in the Daniel Boone National Forest,
Kentucky, 1974–1998.

Variable N x̄ SE P a

Distance to cliff (m)
Used 395 103.94 15.43
Random 511 1149.93 120.58 0.0001

Distance to stream (m)
Used 395 107.82 3.40
Random 511 112.59 5.72 0.1682

Distance to road (m)
Used 395 298.50 11.29
Random 511 302.92 11.46 0.4186

Forest age (years)
Used 329 69.70 1.69
Random 143 65.66 2.81 0.3519

a. Wilcoxon ranked sum test, a = 0.05.

Table 2. Distance (m) to 3 landuse patch types from the landuse layer of 4
selected sizes for locations used by Allegheny woodrats and for random
locations in the Daniel Boone National Forest, Kentucky, 1974–1998.

Variable N x̄ SE Pa

Non-forest patch (m):
>0.5 ha Used 394 1374.08 47.72

Random 511 1275.45 53.63 0.0005
>5.0 ha Used 394 1374.55 47.69

Random 511 1296.14 55.02 0.0008
>50 ha Used 394 1925.32 74.05

Random 511 2024.99 87.98 0.1521
>100 ha Used 394 2701.31 96.66

Random 511 2476.12 97.40 0.0035

Agriculture patch (m):
>0.5 ha Used 394 2190.51 85.86

Random 511 3832.18 213.59 0.0641
>5.0 ha Used 394 2190.51 85.86

Random 511 3832.18 213.59 0.0641
>50 ha Used 394 2759.16 93.57

Random 511 4290.28 211.37 0.0670
>100 ha Used 394 4134.54 128.85

Random 511 4947.86 218.41 0.4183

Human disturbance patch (m):
>0.5 ha Used 394 1589.29 55.00

Random 511 1149.93 120.58 0.0001
>5.0 ha Used 394 1589.65 54.98

Random 511 112.59 5.72 0.0001
>50 ha Used 394 2235.95 75.95

Random 511 302.92 11.46 0.0027
>100 ha Used 394 3260.32 97.07

Random 511 65.66 2.81 0.0001

a. Wilcoxon ranked sum test, a = 0.05.
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Results

Univariate tests suggested that mean distance to nearest cliff was lower for
woodrat locations compared to random locations, whereas forest age and distances to
nearest stream and nearest road were not different (Table 1). Woodrat locations were
farther from non-forest patches of 0.5, 5, and 100 ha and farther from human distur-
bance patches of 0.5, 5, 50, and 100 ha. However, there was not difference in distance
to agricultural patches of any size (Table 2). Chi-square goodness-of-fit analysis indi-
cated a difference in distribution among categories between woodrat and random lo-
cations for slope, landuse, vegetation, forest type, and understory class, whereas
order of the nearest stream and level of karst geology did no differ in distribution
(Table 3).

Based on logistic regression analysis, 9 variable were significant in predicting
probability of finding suitable woodrat habitat at a given location: distance to nearest
cliff, distance to nearest agricultural patch �0.5 ha, distance to nearest human distur-
bance patch �0.5 ha, distance to nearest human disturbance patch �50 ha, geology
susceptible to some karstification, deciduous or mixed forest, deciduous forest, ever-
green forest, and areas with greater than 35% slope (Table 4). The relationship
among theses variable is given by the logistic regression equation:

Table 3. Habitat variables (categorical data) for locations used
by Allegheny woodrats and for random locations in the Daniel
Boone National Forest, Kentucky, 1974–1998.

Variable N c2 df P a

Karst
Used 394
Random 511 4.41 2 0.1100

Stream order
Used 395
Random 511 6.53 7 0.4790

Percent slope
Used 324
Random 456 26.95 6 <0.0005

Landuse
Used 395
Random 504 116.44 10 <0.0005

Vegetation
Used 301
Random 413 73.38 6 <0.0005

Forest type
Used 329
Random 143 39.70 23 0.0170

Understory class
Used 215
Random 106 27.33 13 0.0110

a. Chi-square goodness-of-fit test, a = 0.05.
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Q=1/{1+exp–[(–0.0216)+(–0.0033�distance to cliff)+(–0.0004�distance to agricul-
ture(�0.5 ha))+(0.0003�distance to human disturbance (�0.5 ha))+(0.0002�distance
to human disturbance (�50 ha))+(1.2955�some karstification)+(1.3513�deciduous

or mixed forest)+(1.4961�deciduous forest)+(1.5196�evergreen
forest)+(1.2508�high slope(�35%))]}

In the analysis of the habitat suitability map (Fig. 1) compared to the expected
distribution, there were more test locations in the 0.90–1.00 range and fewer in all
other ranges, especially in the 0.00–0.50 category (Table 5). The mean Q value for all
416 test locations was 0.9097. At the 0.5 probability level, 96.88% of test locations
were correctly classified, and at the 0.9 probability level 79.57% of test locations
were correctly classified (Table 6).

Discussion

Woodrats were distributed throughout the DBNF (Bommarito 1999). With the
importance of cave habitat to woodrats, inclusion of a layer representing the location
of caves might be important, but a complete cave coverage for the DBNF does not
exist. Our attempt to simulate possible cave habitat using a layer of geology suscepti-
ble to karstification appears successful. Many woodrat locations in the database oc-
curred within caves, and the majority of woodrat locations were close to cliffs. This
may be a result of collection of some woodrat location data during cliffline surveys
and bat surveys and may represent a bias in the data. However, use of the cliffline
layer along with the use of the geology layer showing susceptibility to karstification
appears to have provided a suitable method of predicting both cave and cliffline habi-
tat, given available data. The results of this study concur with several recent studies

Table 4. Summary of stepwise logistic regression model to estimate
probability of finding suitable Allegheny woodrat habitat in the Daniel
Boone National Forest, Kentucky. Parameter estimates are maximum-
likelihood estimates based on habitat data available in 2000.

Parameter
Variable estimate c2 df Pa

Intercept –0.0216 48.0250 1 0.0001
Distance to cliff –0.0033 74.7553 1 0.0001
Agriculture (�0.5 ha) –0.0004 42.1920 1 0.0001
Human disturbance (�0.5 ha) 0.0003 5.8659 1 0.0154
Human disturbance (�50 ha) 0.0002 5.2884 1 0.0215
Susceptible to some karstification 1.2955 14.4545 1 0.0001
Deciduous or mixed forest 1.3513 38.0243 1 0.0001
Deciduous forest 1.4961 35.5197 1 0.0001
Evergreen forest 1.5196 18.7275 1 0.0001
Slope �35% 1.2508 7.4265 1 0.0064

a. Wald chi-square.
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of woodrat habitat (Balcom 1994, Myers 1997, Bommarito 1999) that suggest
woodrats prefer areas with high slope and certain types of vegetation cover.

Woodrat locations were farther from all sizes of human disturbance patches
than random locations. Furthermore, the difference in distance was greatest with the
100-ha patch size and least with the 0.5-ha patch size. In West Virginia, Myers (1997)
indicated that disturbances within 1,000 m did not affect woodrat use of a site. Ac-
cording to Balcom (1994) woodrats in Pennsylvania were not highly sensitive to
human activity near nest locations as indicated by proximity to clearcuts and roads.

Figure 1.PPP (a) Habitat suitability for the Allegheny woodrat in the Daniel Boone National
Forest (DBNF), Kentucky. (b) Enlarged inset box area from Fig. 1a. (c) Location of DBNF in
Kentucky with county boundaries.
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Like Balcom (1994) and Myers (1997), we found that distance to nearest road was
not a significant determinant of woodrat habitat. Our results, however, indicate that,
at least on the landscape level, woodrats are likely affected by proximity to human
disturbance.

The effects of forest fragmentation on woodrats appear to be dependent on spa-
tial scale. In West Virginia, Myers (1997) found that at the level of the forest stand,
fragmentation disturbances did not have any measurable impact on woodrat site use.
In Pennsylvania, Balcom (1994) did not find a difference in habitat heterogeneity be-
tween historically occupied and currently occupied woodrat sites according to an
Anderson Level II landuse classification. However, Balcom (1994) postulated that
reclassifying according to a broader Level I landuse type might yield different re-
sults. This appears to be the case with the assessment of forest versus non-forest in
our study, in which 3 of 4 non-forest patch sizes showed differences between woodrat
and random location distances. The effect of forest fragmentation in woodrats is sup-
ported by Hassinger et al. (1996) who found that woodrat colonies closer to a non-
forest edger were more likely to be unoccupied than those farther away.

The location of woodrat habitat at greater distances from human disturbance

Table 6. Classification table for test locations
of the Allegheny woodrat habitat model of the
Daniel Boone National Forest, Kentucky.

Probability % Correctly % Incorrectly
Level classified classified

0.500 96.88 3.13
0.600 95.91 4.09
0.700 94.71 5.29
0.800 89.18 10.82
0.900 79.57 20.43

Table 5. Chi-square goodness-of-fit analysis of the predicted probability
(q) of suitable habitat for Allegheny woodrat test location in the Daniel
Boone National Forest, Kentucky (P�0.001, a=0.05; df=5).

N % Total Expected
q locations areaa locationsb c2

0.000–0.499 13 0.3341 138.98 114.20
0.500–0.599 4 0.0441 18.34 11.22
0.600–0.699 5 0.0565 23.52 14.58
0.700–0.799 23 0.0800 33.30 3.18
0.800–0.899 40 0.1178 49.01 1.66
0.900–1.000 331 0.3674 152.85 207.64

Total 416 1.0000 416.00 352.47

a. Percent of area within DBNF with q values in each category.

b. Number of locations expected based on percent total area if 416 locations were randomly distributed

throughout DBNF.
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seems intuitive, but their tendency to be located closer to agricultural patches upon
first analysis was confusing. We suggest that this proximity is a function of the region
as represented by the landuse data layer. Central areas of DBNF, where most woodrat
locations were located, is represented by mainly forest with many 0.5-ha agricultural
patches dispersed throughout, making proximity to such patches unavoidable. Ran-
dom locations, on the other hand, were just as likely to be near the edge of DBNF,
close to larger agricultural patches, but not as close to many 0.5-ha patches, which
tended to be in the interior of DBNF. A second possible explanation for the presence
of woodrats near agriculture involves a type of observer bias on the part of the biolo-
gists who initially recorded woodrat locations. It is likely that more accessible areas
were visited by biologists more frequently, and that these areas tended to be closer to
agriculture than more remote areas.

Our habitat suitability map can be used to more easily search out new woodrat
locations, monitor and analyze previously known locations, manage DBNF to main-
tain existing habitat, and restore previous habitat. In the southern part of the range of
Allegheny woodrats, the primary threat to the current stable population appears to be
landscape-level forest fragmentation as a result of development practices, manage-
ment of the forest for timber harvest through clear-cuts, and management for early
and mid-successional habitat. Addressing immediate impacts of forest management,
Castleberry (2000) found that although local clearcuts have minimal impact when
sufficient intact forest is retained adjacent to colonies, woodrats were not found on
rocky outcrops where overstory trees had recently been completely removed. This
was despite evidence of previous woodrat presence at those outcrops. Periods of in-
creased stress may exaggerate the effects of habitat fragmentation. For example,
woodrats increased home range size and distance traveled in clearcuts following a
decline in hard mast production when compared to intact forest sites (Castleberry
2000).

Habitat fragmentation may also increase the risk of genetic isolation to woodrat
populations. Castleberry (2000) advocates the retention of dispersal corridors be-
tween proximate colonies to ensure gene flow and maintain genetic diversity. Our
landscape-level analysis of distance of woodrat locations from human disturbance
areas also emphasizes the threat of forest fragmentation to woodrat habitat. To main-
tain current woodrat populations, development practices and timber harvest activities
that result in major landuse changes must accommodate woodrat needs. But manage-
ment based on a model for a single species is often not practical. Hence, future ef-
forts should concentrate on modeling for multiple species.
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