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Identification of Potential Red-cockaded
Woodpecker Habitat Using Landsat Thematic 
Mapper and Remotely Sensed Data

James A. Cox, Tall Timbers Research Station, 13093 Henry Beadel
Road, Tallahassee, FL 32312-9712

Abstract: Identifying habitat for species with special ecological requirements can be a
challenging task when procedures are based on remotely sensed data. I used georefer-
enced locations of red-cockaded woodpecker (Picoides borealis) cavity trees to evalu-
ate the effectiveness of Landsat Thematic Mapper (TM) data and a digital elevation
model in identifying oldgrowth pine forests that provide nesting habitat for this species.
Remotely sensed data associated with active cavity trees (N=142) and polygons sur-
rounding active cavity clusters (N=179) were compared to locations with unsuitable
habitat (N=1000). Elevation was the best predictor of woodpecker locations, but some
TM bands improved classifications slightly. The best classification (overall accu-
racy=74%, kappa=0.45) was based on an elevation mask and transformed TM data as-
sociated with the red, blue, and green TM bands. TM bands were transformed using lin-
ear stretching procedures and neighborhood statistics computed using a 5-by-5 pixel
window. Accuracy might be further improved by analyzing patch size and shape char-
acteristics, but such analyses would be complex and likely still fall short of common ac-
curacy standards. Other procedures to identify potential habitat, such as aerial photo in-
terpretation, are more appropriate for this species, and any attempt at habitat
identification must allocate sufficient time for extensive field surveys.
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Habitat delineation is an essential step in managing populations of rare species,
but several factors can thwart attempts to construct accurate habitat maps. Access to
private lands containing suitable habitat is often prohibited (Scepan et al. 1987,
Stoms et al. 1993). Large areas often also must be surveyed, which requires consider-
able time and expense when field-based techniques are employed (Short 1982). Be-
cause of these and other difficulties, wildlife biologists frequently consider use of re-
motely sensed data for habitat mapping efforts before more intensive techniques are
proposed (Stoms 1994).

Landsat Thematic Mapper TM data have been used to map potential habitat for
many wildlife species, including several rare species (e.g., Hodgson et al. 1987,
Jakubauskas 1992, Shaw 1989). Landsat TM data capture reflectance data from the
visible to the thermal-infrared portions of the electromagnetic spectrum and have a
spatial resolution of 0.09 ha (Short 1982). TM data appear to be most useful when
applied to wide-ranging species such as grizzly bear (Ursus arctos; Craighead et al.
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1982) and California condor (Gymnogyps californianus; Stoms et al. 1993), but at-
tempts to map features at a finer scale also have been productive (Lauver and
Whistler 1993, Shaw 1989). Landsat TM data also form the primary source of habitat
information used in many GAP analysis programs (Scott et al. 1993, Stoms 1994).

The red-cockaded woodpecker (Picoides boreals) is an endangered species that
occupies mature pine forests of the southeastern United States (Lennartz and Henry
1985). Red-cockaded woodpeckers excavate breeding and roosting cavities only in
old growth (usually �80-year-old) living pine trees, and breeding groups maintain
large territories (ca. 40–100 ha; Lennartz and Henry 1985) that contain a mixture of
upland pine and other plant communities (Hovis and Labisky 1985). Because red-
cockaded woodpeckers select nesting sites based on habitat structure and timber age
as well as dominant tree species, delineation of suitable habitat can be particularly
difficult using remotely sensed data.

Thomlinson (1993) analyzed TM data within polygons containing suitable
woodpecker habitat and then performed standard supervised and unsupervised clas-
sification procedures (Short 1982) for a larger area. The accuracies of these classifi-
cation were low (�4%). Greater accuracy might have been achieved if additional ge-
ographic data, such as elevation (Faust et al. 1991), had been included, or locations
with suitable habitat conditions had been more precise. Accuracy also might have
been improved if image enhancement (Short 1982), neighborhood classification
(Swain et al. 1981), or patch shape analysis (McGarigal and Marks 1995) had been
applied.

I used precise location information collected using a global positioning system
(GPS) and more extensive classification procedures to reassess the use of TM data
and other remotely sensed data (e.g., a digital elevation model) to identify potential
nesting habitat for red-cockaded woodpeckers. My objective was to identify red-
cockaded woodpecker habitat by comparing remotely sensed data at locations with
active cavity trees to locations with unsuitable habitat conditions using discriminant
function analysis (Clark et al. 1993). The data come from the population of red-cock-
aded woodpeckers found in the Red Hills region of northwest Florida and southwest
Georgia (Engstrom and Baker 1995, Cox et al. 2001). This is the largest population
remaining largely on private lands (Engstrom and Baker 1995), so identification of
potential habitat is an important step for conservation of the population.

C. Ambrose, L. Brennan, T. Engstrom, J. Meyers, and an anonymous reviewer
provided helpful comments on earlier drafts of this paper. I also thank J. van Zyl and
W. Baker for assistance in developing the data sets used in these analyses.

Methods

The Red Hills physiographic region covers 24,000 km2 of Jefferson, Leon, and
Gadsden counties, Florida, and Grady and Thomas counties, Georgia. Upland forests
are a mixture of second-growth loblolly (Pinus taeda), shortleaf (P. echinata), and
longleaf pines (P. palustris) and some relatively undisturbed, old-growth stands of
longleaf pine (Engstrom and Baker 1995).
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Cox et al. (2001) visited cavity clusters in 1999 and georeferenced each cavity
tree using a Trimble GeoExplorer II unit (Trimble Navigation Ltd., Sunnyvale,
Calif.). The 2-dimensional variation in georeferenced locations was �3 m (Cox et al.
2001). Cavity trees also were classified as “active” (occupied within the past few
months) or “inactive” (not recently occupied) using criteria in Jackson (1977). Only
active cavity trees were used in these analyses. I created polygons depicting core
cluster areas by connecting cavity trees (both active and inactive) in the cluster with a
minimum convex polygon (Lipscomb and Williams 1995). Only core polygons con-
taining at least 1 active cavity were used in the analyses.

Landsat 7 TM data (Earth Resour. Observ. Systems Data Ctr., Sioux Falls, S.D.)
collected on 24 December 1999 were obtained from the Florida Department of Envi-
ronmental Protection. TM data were georeferenced using digital orthographic quad-
rangles obtained from the Georgia Geographic Information Systems (GIS) Clearing-
house (Atlanta, Ga.) to attain a root mean square error of 0.5 (�7 m). Each TM band
was then converted to the raster format used in ArcView Spatial Analyst (Environ.
Systems Res. Inst., Redlands, Calif.). A digital elevation model obtained from the
Georgia GIS Clearinghouse (1:24,000) also was converted to a raster format. I
processed all GIS data layers using a Universal Transversed Mercator projection
(Zone 16, North Am. Datum 1983). All GIS procedures were performed using 
ArcView and ArcView Spatial Analyst, and supplemental programs developed for
ArcView (e.g., Hooge et al. 1999, Rempel et al. 1999).

Locations of unsuitable habitat conditions were generated using 2 methods.
First, aerial photographs taken in 1994 (1:24,000) were used to digitize marshes,
lakes, fields, pine plantations, urban areas, and other land cover features �0.25 ha.
These features were digitized in conjunction with a study of upland ground cover (C.
Ambrose, unpubl. rep., Tall Timbers Res. Sta., Tallahassee, Fla.) and did not include
floodplain forests and upland hardwood forests. Point locations (N=750) were cre-
ated randomly within these digitized polygons with the stipulation that locations
were �15 m from exterior edges (Hooge et al. 1999).

The second method to establish unsuitable locations focused on floodplain
forests and upland hardwood forests not digitized above. These cover types were
identified from digital orthographic quadrangles, and I generated x-, y-locations
(N=250) by digitizing sites directly in the GIS. Locations generated in this manner
were �500 m apart to minimize spatial autocorrelation (see below).

I performed statistical comparisons of locations with suitable habitat (i.e., active
clusters) to locations with unsuitable habitat (fields, urban areas, lakes, forested wet-
lands, etc.) using Systat (Wilkinson 1998). Elevation values and spectral signatures
for TM data were compiled at each location, and multivariate discriminant function
analysis (DFA) was used to identify variables that best discriminated between suit-
able and unsuitable locations (Clark et al. 1993, Wilkinson 1998). Effectiveness of
different variables was determined by comparing F-ratios and tolerance statistics
(Wilkinson 1998). Tolerance statistics gauge the redundancy of variables included in
a DFA (Wilkinson 1998). The kappa statistic (Titus et al. 1984) was used to assess
the overall accuracy of classifications (Wilkinson 1998).
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I used probability and box plots (Wilkinson 1998) to check for violations of nor-
mality. Because cavity trees were aggregated by clusters, timber stands, and owner-
ships. I also investigated the extent to which data were spatially correlated. A high
degree of spatial autocorrelation could lead to artificially inflated sample sizes in sit-
uations where several active trees were in close proximity. Semivariograms depicting
spatial dissimilarity among points based on standardized covariances (Deutsch and
Journel 1998, Wilkinson 1998) were used to check for spatial autocorrelation. I also
used P-values adjusted by Bonferroni approximations (Wilkinson 1998) in cases
where multiple comparisons were made using t-tests.

I evaluated several types of image enhancement (e.g., masking and linear
stretches; Short 1982), neighborhood analysis (Swain et al. 1981), and pattern recog-
nition (McGarigal and Marks 1995) procedures. An elevation mask (Swain et al.
1981) was used to analyze TM data above the minimum elevation observed for
woodpeckers (31.3 m above mean sea level). Linear contrast stretches (Short 1982)
were applied to selected TM bands that appeared to discriminate between suitable
and unsuitable locations. Linear stretches were truncated using 90% of the range of
values (Short 1982). Neighborhood statistics (Swain et al. 1981) were computed for
selected TM bands transformed using linear stretching. Neighborhood statistics were
created by examining a 5-by-5 pixel window and assigning the central pixel with 2
statistics: (1) average spectral value of pixels within the window, and (2) standard de-
viation of pixels within the window. Finally, patch size and shape characteristics
were considered for a subset of the region. Unsuitable features such as small pastures
and food plots have regular geometric shapes that might be identified using patch
characteristics such as area-to-perimeter ratios, fractal dimension, and neighborhood
heterogeneity (McGarigal and Marks 1993).

Results

TM Data for Active Trees and Core Areas

Only the low-and high-gain thermal bands differed in the comparison of TM
data associated with active cavity trees to TM data associated with core cluster poly-
gons (Table 1). DFA of suitable and unsuitable sites based on TM data for active cav-
ity trees had an overall accuracy of 67%, while a similar DFA based on core cluster
polygons had an accuracy of 60%. Red and blue TM bands best distinguished suit-
able and unsuitable sites for both cavity trees and core polygons. In the case of cavity
tree locations, the red TM band alone correctly classified 46% of active trees, and es-
timates of statistical tolerances (Table 2) indicated the red TM band was correlated
with other TM bands having fair discrimination. Further analyses were limited to
comparisons of active cavity trees and unsuitable locations.

Probability and box plots (Wilkinson 1998) suggested that 3 variables deviated
from normality, but only for locations associated with unsuitable habitat. Attempts to
transform these 3 variables resulted in deviations from normality for data recorded at
suitable locations, so data transformations were not performed. Lindman (1974)
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demonstrated that DFA was robust to violations of the assumptions of homogeneity
of variances and normality.

As expected, spatial autocorrelations of TM data was generally high (g [h]
�0.45) for proximal locations (i.e., �500 m apart); however spatial autocorrelation
fell sharply (g [h]�0.20) once distances �500 m were achieved. Because the median
distance among active clusters in this region was 516 m (Cox et al. 2001), I used av-

Table 1. TM data associated with active cavity trees (N = 428), polygons surrounding
clusters of cavity trees (N = 179), and unsuitable sites (N = 1000). F-ratios are based on
comparisons of active cavity trees or active cluster polygons to unsuitable locations.

Active cavities Core cluster polygons Unsuitable sites

TM Band Avg. SD F Avg. SD F Avg. SD

Panchromatic 32.45 2.83 38.58 31.85 3.07 0.08 31.86 3.41
Blue 52.08 1.36 55.17 52.33 1.58 34.48 53.66 2.50
Green 35.00 1.24 18.11 35.23 1.49 0.70 36.29 2.78
Red 31.48 3.01 93.08 31.92 2.94 42.24 32.75 5.12
Near infrared 58.37 4.23 4.74 57.74 4.49 1.37 57.12 7.62
Mid infrared 45.29 5.67 19.08 47.02 6.03 1.33 50.03 13.44
Far infrared 26.52 3.61 14.07 27.26 3.91 7.43 30.35 9.18
LG thermala 115.02 0.62 0.96 115.15 0.71 2.04 115.09 1.54
HG thermala 121.40 0.94 4.45 121.54 1.036 9.90 121.45 2.56

Elevation 65.54 12.14 136.60 65.11 11.77 125.45 56.70 14.57

a. Differed in comparisons of active clusters and core cluster polygons, t 604 � 3.0, Bonferroni-adjusted P � 0.05.

Table 2. Discriminant function analysis of Landsar TM bands and elevation data
at sites that were suitable (N = 142) or unsuitable (N = 1000) for red-cockaded
woodpeckers. Variables are sorted by decreasing F-ratios (Wilkinson 1998), which
help gauge the importance of variables in distinguishing between suitable and
unsuitable locations. Tolerance (Wilkinson 1998) measures covariation among
variables and is low (�0.1) when a variable is highly correlated with another
variable. Canonical functions represent the weightings applied in the classifications.

Standard canonical
Variable F Tolerance functions

Elevation 120.98 0.91 0.65
Red 114.85 0.11 1.85
Green 43.01 0.12 –1.13
Blue 40.12 0.25 –0.75
Far infrared 26.59 0.33 –0.53
Panchromatic 16.01 0.69 0.29
High gas thermal 12.08 0.09 0.25
Mid infrared 11.26 0.18 –0.01
Near infrared 8.04 0.38 0.42
Low gain thermal 0.91 0.10 –0.08
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erage TM and elevation values for all active cavity trees in clusters containing �1 ac-
tive cavity (N=142).

DFA Using Evaluation Data and Enhanced Imagery

When elevation and TM data were considered simultaneously, elevation was the
best predictor of suitable locations (Table 2) and correctly classified 61% and 62 % of
the suitable and unsuitable, respectively. A classification based on elevation and raw
TM data for 5 bands with high (�15.0) F-ratios (Table 2) contrasted elevation and the
panchromatic and red TM bands against the blue, green, and far infrared TM bands.
This classifications had an overall accuracy of 65%, but kappa was low (0.31), indi-
cating poor discrimination.

Application of the elevation mask (31.3 m above mean sea level) eliminated 232
unsuitable locations. The DFA performed on the remaining locations indicated that
red, green, blue, and far infrared bands best distinguished locations (F=37.37, 36.67,
105.15, and 24.89, respectively), but overall accuracy was 68%, which was indistin-
guishable from that obtained without using the elevation mask. Kappa also was low
(0.36).

DFA performed following application of linear stretching to 5 TM bands with
high ratios (�15.0; Table 2) revealed that elevation was still the best predictor of suit-
able locations (F=126.34), but the panchromatic TM band was the second strongest
predictor (F=33.89). However, the classification based on these transformed TM data
was not significantly improved (overall accuracy of 62%; kappa=0.21).

Neighborhood Analysis

A DFA performed using elevation and neighborhood statistics led to better dis-
crimination of sites. Elevation still best distinguished between suitable and unsuit-
able locations (Table 3); however, the average value of the red band, standard devia-

Table 3. Results of discriminant function analysis of neighborhood statistics
obtained from transformed TM bands (see text). Variables are sorted by decreasing
F-ratios (Wilkinson 1998). Canonical functions represent the weightings applied in
the classifications.

Standard canonical
Variable F Tolerance functions

Elevation 109.56 0.78 0.59
Avg. red 52.31 0.31 –0.77
SD blue 44.53 0.54 0.54
SD green 22.30 0.39 –0.45
Avg. blue 16.81 0.73 0.29
Avg. far infrared 15.54 0.36 0.39
SD far infrared 13.43 0.42 0.34
SD panchromatic 13.43 0.53 –0.30
SD red 11.29 0.23 0.42
Avg. panchromatic 11.05 0.89 –0.21
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tion of the blue band, average value of the blue band, and standard deviation of the
green band appeared to separate groups better than other TM data considered to this
point. The overall classification derived from this DFA was 74% with kappa=0.45.
When these same neighborhood statistics were analyzed following application of the
elevation mask, results were similar to those above, but the classification had a
slightly lower overall accuracy (71%) and kappa was 0.42. A large proportion of
suitable sites (85%) was correctly classified, but only 66% of the unsuitable sites
were correctly classified.

Patch Characteristics in Classified Map

I created a classified map of potential habitat (Fig. 1) by applying the standard-
ized canonical functions in Table 3 and summing the appropriate GIS layers. The el-
evation mask was used to limit the classification to regions �31.3 m. The classifica-
tion (Fig. 1) was further scaled to range 0–100 with greater values corresponding to
suitable locations (avg.=68.6, SD=8.6) and lower values corresponding to unsuitable
sites (avg. 55.7, SD=16.85). Regions with the greatest number of misclassified loca-

Figure 1.PPP Classified map of potential re-cockaded woodpecker habitat in an area of the
Red Hills region. This map was scaled 0–100 with greater values corresponding to suitable
locations (avg. = 68.6, SD = 8.6) and lower values corresponding to unsuitable sites (avg. =
55.7, SD = 16.85). Overall classification accuracy was 74% with kappa = 0.45.
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tions (i.e., values in the range 50–65) contained roughly 25% of all locations and
covered 60,234 ha (approximately 32% of the total area).

Figure 1 was aggregated into 3 categories of suitability to assess patch size and
shape characteristics. The categories were (1) “probably unsuitable” (classes 0–49),
(2) “suitable or unsuitable” (classes 50–65), and (3) “probably suitable” (classes
66–100). Eighteen shape neighborhood metrics (Table 4) were calculated (Rempel et
al. 1999) for each patch. Patches were defined as cells with similar values (1–3)

Table 4. Patch variables considered in a classified map of potential habitat (Fig. 1). The
map had 3 total classes: (1) unsuitable, (2) possibly suitable/unsuitable, and (3) suitable (see
text). Patches consisted of similarly valued cells (1–3) within a search radius of 30 m along
diagonal axes; aggregations of patches were based on a search radius of 300m. Analyses were
restricted to � 300 m of locations (N = 226) misclassified in other analyses. The range is
provided in parentheses. Variable acronyms were used in Table 5.

Variable name Acronym Description

Aggregation area AREA Sum for patches in aggregation (0.103–118.37 ha).
Aggregation area standard ASD Root mean squared error for patches in aggregation 
deviation (0.00–11.32).
Aggregation shape index ASI Sum of edge segments divided by total area–2

(1.00–3.12).
Area-weighted aggregation AWFD Measures patch complexity as shapes deviate from
fractal dimension simple circle (=1) to shapes with complex perimeters 

(=2);  weighted by area (1.0–1.19).
Area-weighted mean AWSI Sum of patch perimeters divided by patch area–2 

aggregation shape index (m2);weighted by area (1.0–7.2).
Dissimilar patches within 300 m DISSIM N patches of other class within aggregation (0–17).
Aggragation edge density ED Sum of edge segments divided by area (0.03–10.28).
Largest patch index LPI Percent area of largest patch compared to total area 

(0.01–3.20).
Median patch area MDPA Median patch size in an aggregation (0.06–18.82 ha).
Mean patch area MPA Aggregation area divided by number of patches 

(0.06–16.97 ha).
Mean perimeter-to-area ratio MPAR Sum of perimeter-to-area ratios divided by N patches 

(193.3–1772.1).
Mean patch edge MPE Total edge length divided by N patches 

(120.3–4771.1 m)
Mean patch fractal dimension MPFD Log patch perimeter (m) divided by the log patch area 

(m2) divided by the number of patches.
Number of patches NUMP N patches within an aggregation (1–30).
Aggregation perimeter PERIM Length surrounding aggregation; includes internal 

holes (128.3–43422.7 m).
Perimeter PERIM Length of outermost edge of aggregation 

(120.2–32,272.4 m).
Similar patches within 300 m SIMIL N patches of a similar class within an aggregation 

(1–10).
Total aggregation edge TE Sum of edge lengths within an aggregation 

(121.0–37,798.1).
Neighborhood variety VAR N distinctive classes within 300 m (1–3).
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within a search radius of 30 m along diagonal axes. Because of the complexity of the
analysis, it was limited to a 300 m area surrounding 226 locations misclassified using
variables in Table 3 (suitable=24, unsuitable=202). Just under half (46%) of the area
consisted of “suitable or unsuitable” cells, while “probably unsuitable” and “proba-
bly suitable” cells made up 24.3% and 29.7% of the area, respectively.

Few geometric shape variables differed in this comparison (Table 5). Variables
with the greatest F-ratios (DISSIM, SIMILAR, and NUMP) measured the hetero-
geneity of locations (Appendix 1) or edge features (ED and TE). Low tolerance sta-
tistics (Table 5) suggested several of these variables were redundant. Suitable sites
misclassified in previous classifications tended to have fewer nearby patches with
similar values and also a smaller total number of neighboring patches with similar
values. The overall accuracy of a new classifications of previously misclassified sites
based on shape variables was 47% with kappa=0.26.

Discussion

Classification of potential habitat for the red-cockaded woodpecker using TM
data can be improved when these data are used in combination with elevation data
and accurate occurrence information. Thomlinson (1993) processed TM data for
polygons averaging about 30 ha and had little success identifying potential habitat.
Core polygons created for woodpecker clusters in the Red Hills averaged only 1.6 ha

Table 5. F-ratios and tolerance statistics for 18 patch and shape variables derived from a
classified map of potential habitat (Fig. 1). Variable descriptions provided in Table 4. The
overall accuracy of the classification of suitable and unsuitable locations misclassified in
previous classifications was 47%; kappa = 0.26.

Suitable Unsuitable

Variable Avg. SD Avg. SD F Tolerance

AREA 43.36 62.58 37.25 59.29 0.00 0.01
ASD 3.00 3.06 4.31 5.83 0.25 0.01
ASI 1.49 0.41 1.44 0.29 0.00 0.00
AWFD 1.11 0.06 1.12 0.07 0.43 0.02
AWSI 2.07 0.81 2.40 1.65 0.04 0.01
DISSIM 8.30 4.40 8.14 4.61 1.13 0.74
ED 1.10 1.07 1.72 2.84 0.62 0.00
LPI 0.32 0.29 0.52 0.89 0.08 0.01
MDPA 1.66 3.57 1.20 2.53 0.34 0.03
MPA 3.64 3.60 3.25 2.88 0.01 0.01
MPAR 695.10 293.53 745.43 296.80 0.03 0.32
MPE 1152.03 959.89 1041.82 727.54 0.07 0.00
MPFD 1.06 0.04 1.06 0.03 0.03 0.01
NUMP 4.17 4.43 5.83 8.23 1.38 0.03
PERIM 1333.34 1737.16 1154.31 1628.21 0.00 0.01
SIMILAR 2.41 2.10 2.79 2.62 2.35 0.56
TE 4061.14 3944.74 6333.03 10435.98 0.62 0.00
VARIETY 2.11 0.64 2.04 0.66 0.32 0.86
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and closely matched the data associated with active cavity trees. When a classifica-
tion was performed using TM data associated with core polygons, the overall accu-
racy was 60% and the kappa statistic was 0.23 as compared to kappa statistics �0.04
obtained by Thomlinson (1993) using larger polygons. Use of polygons �2–5 ha
may exacerbate common classification problems such as the “mixed-pixel effect”
(Short 1982).

On the other hand, elevation data, not TM data, proved to be the best predictor
of suitable habitat, and inclusion of elevation data was essential to improving the ac-
curacy of all classifications. TM data improved classifications slightly after image
enhancement procedures were performed (e.g., linear stretches), but similar im-
provements may not be realized on public lands where most large woodpecker popu-
lations now reside (James 1995). The effectiveness of TM data in the Red Hills prob-
ably hinged on the diversity of cover types that existed. Urban areas, agricultural
fields, roads, pastures, and other treeless features found in the Red Hills can be easily
distinguished from forest lands using TM data (C. Ambrose, unpubl. rep., Tall Tim-
bers Res. Sta., Tallahassee, Fla., 2000), but these cover types will be less common on
many public lands. Thomlinson (1993) could not distinguish timber stands (e.g., ma-
ture sawtimber, immature sawtimber, sparse sawtimber, etc.) that varied in a subtle
manner on the Sam Houston National Forest. Similarly, I found several young, dense
pine plantations with small patches of thinned canopies that were classified as “suit-
able.”

With a low overall accuracy �75%, the best classification of potential habitat
(Fig. 1) contained large areas where red-cockaded woodpeckers were not likely to
occur. Comparison of unsuitable sites to digital orthographic quadrangles revealed
that many unsuitable locations classified as “suitable” occurred in small (�3.5 ha)
fields surrounded by appropriate habitat, near edges of fields and unpaved trails, and
in hardwood areas where canopy cover appeared to be sparse compared to nearby
forested areas. Common errors associated with remotely sensed data obviously con-
tribute to these inaccuracies, but another constraint lies in the biology of red-cock-
aded woodpeckers. Habitat occupancy is strongly influenced by low dispersal rates
and the number of nearby active territories (Thomlinson 1993, Cox et al. 2001). Sites
far removed from active woodpecker clusters and lacking suitable cavities will not be
occupied regardless of the quality of the habitat. Such life-history traits make field
surveys imperative in any attempt to map habitat for this species.

Scores of new variables could have been developed either for use in the classifi-
cation of TM data or for the evaluation of patch shape characteristics, but it seems
unlikely that new variables could improve the classification. Shape variables consid-
ered here improved the classification only by approximately 10% (i.e., 47% of the
30% of locations misclassified initially), and it would be difficult to perform such an
analysis for the entire region. The subregion considered here included about 25% of
the total region and involved �17,000 polygons. Many GIS software packages are
not capable of analyzing the �80,000 polygons that might be found in a comprehen-
sive regional analysis.

Production of potential habitat maps using less complicated methods should be
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considered as an alternative approach for this species. Pestana (1986), for example,
used 1:65,000 color infrared photographs to map potential red-cockaded woodpecker
habitat in southern Missouri. Interpretation of aerial photographs also is generally
better understood by many wildlife biologists, and this approach might cover a large
area as effectively as a GIS-based processes involving remotely sensed data and
scores of transformed variables. Also, given the influence of nearby active territories
on habitat occupancy (Thomlinson 1993, Cox et al. 2001), time must be allocated for
field surveys regardless of the methods used to delineate habitat. Most of the habitat
occupied by this Red Hills population was largely known prior to initiating an analy-
sis of TM data, so extensive field surveys, coupled with quick assessments of poten-
tial habitat made using convenient aerial maps, might be better strategies to pursue.

Higher resolution imagery might eventually improve the overall accuracy of
habitat maps created for species with special requirements, but at least one attempt to
map woodpecker habitat using high-resolution imagery was not successful. K.
Slocum (pers. commun., Topographic Eng. System, Army Corps Eng.) collected
multi-spectral imagery with a spatial resolution of 1 m and attempted to distinguish
areas with mature longleaf pine used for nesting by red-cockaded woodpeckers from
areas with younger loblolly pines that were not used. Reflectance data were centered
at 450, 550, 650, and 800 nanometers, but separation of sites containing longleaf was
poor. Imagery collected in different seasons might have helped in this instance
(Thomlinson 1993), but again aerial photo interpretation and other less sophisticated
techniques, might be more easily applied by wildlife biologists.

Although attempts to map red-cockaded woodpecker habitat using remotely
sensed TM data will not likely meet common accuracy standards (Stoms et al. 1994),
TM data may have some utility when used to develop a coarse map of potential habi-
tat in and immediately surrounding cavity clusters. Less technical approaches involv-
ing aerial photography should be considered first, but the classified map (Fig. 1) de-
veloped here has helped to estimate foraging habitat for several woodpecker clusters,
and, in combination with other analyses (Cox et al. 2001), to identify sites where ar-
tificial clusters (Copeyon et al. 1991) might be constructed. The classification also
highlights areas in the Red Hills where woodpeckers are not known to occur and ad-
ditional field surveys are warranted. If TM data are to be used in a similar manner
elsewhere, the analyses should be based on a large sample of precise and recent (�2-
year-old) occurrence records.
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