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Abstract: We developed a Monte Carlo simulation approach to examine statistical power
in analysis of population trend data. Our stepwise approach was to perform a regression
analysis to test the null hypothesis that the slope of the time series regression line was
equal to 0 (i.e., Ho:b = 0 for population count data collected over i years), to use Monte
Carlo simulations to calculate the statistical power of the test of H0:b = 0 when Ho was
not rejected, and to estimate sample size requirements within and across years to detect
a population trend at a specified power, Type I error, and coefficient of variation. To
demonstrate this approach and illustrate important considerations when conducting
power analysis, we analyzed 5 sets of shorebird count data collected by a single observer
in the International Shorebird Survey, Marco River, Florida, in 1975 and 1980 to 1987.
Our approach to determining statistical power in analysis of trends in population count
data offers improvements over previously described methods because it is a straightfor-
ward approach to simultaneously evaluating the relationship between variance, sample
size, effect size, alpha, and power, and it allows assessment over a range of sample
sizes, providing a means for planning and evaluating sampling designs for trend tests at
multiple levels of statistical precision.
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The power (l-(3) of a statistical test of the null hypothesis (Ho) is the probability
that a false Ho will be correctly rejected (Rotenberry and Wiens 1985, Cohen 1988).
The underlying issues and principles of statistical power analysis have been reviewed
by Cohen (1988), Peterman (1990a), and Cobb et al. (1994). Power analysis has
received considerable attention in other fields, but wildlife scientists have usually
overlooked its use in planning and evaluating research (Cobb et al. 1994). Cobb et
al.'s (1994) review of the use of power analysis by wildlife scientists confirmed our
suspicion that wildlife researchers/scientists do not regard power analysis as a critical
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component of experimental design or analysis. Researchers may be uninitiated in the
use of power analysis (Peterman 1990a) or may not report power results because they
are unacceptable (Cobb et al. 1994). Power analysis should be an integral component
of experimental design and sound statistical analyses (Cohen 1988, Mangel 1993).
Kraemer and Thiemann (1987), Cohen (1988), and Peterman (1990a) provided excel-
lent discussions of power and sample size calculations for many statistical methods
used by wildlife scientists. We describe a simulation-based approach to power analy-
sis in tests of trends in population count data.

Population trend data typically are analyzed using normal-theory regression
(Rawlings 1988) to test H0:b = 0 or using a nonparametric approach (Titus et al. 1990).
The analysis should include an estimate of the power of the test slope coefficient,
particularly if Ho is not rejected. Gerodette (1987) presented an approach for estimat-
ing the power of linear regression to detect a trend at a specified power. This approach
was re-examined by Link and Hatfield (1990) and appears inappropriate for practical
monitoring of populations when sample sizes are low (Gerrodette 1991) or data sets
include multiple annual surveys. Kendall et al. (1992) described a method for estimat-
ing the power of tests to detect changes in low-density, dispersed animals using sign
data recorded along survey transects.

The Florida Game and Fresh Water Fish Commission (FGFWFC) expends con-
siderable financial and staff resources to conduct population surveys of numerous
species of game and nongame wildlife. Only recently have FGFWFC staff begun
questioning the statistical power of these monitoring programs and trend data. Our
objective was to develop a practical tool for planning programs for monitoring popula-
tions and analyzing abundance data under conditions typically faced by management
agencies. To address this need, we used PC-SASR to develop a stepwise approach for
performing regression analyses to test H0:b = 0 for population count data collected
over i years, using Monte Carlo simulations to calculate the statistical power of the
test of H0:b = 0, and estimating samples size requirements within and across years to
detect a population trend at a specified power and coefficient of variation (CV). We
illustrate our approach with an example using International Shorebird Survey (ISS)
data collected at Marco Island, Florida.

This work was supported through the Nongame Wildlife Trust Fund of the Flor-
ida Game and Fresh Water Fish Commission's Bureau of Nongame Wildlife. We
appreciate reviews and comments on the manuscript from D. R. Eggeman, K. M.
Enge, B. A. Harrington, P. Jodice, B. A. Millsap, M. R. Riggs, M. D. Samuel, and T.
E. O'Meara. International Shorebird Survey data from Marco Island, Florida, were
collected by T. Below and provided for use by B. A. Harrington, Manomet Observa-
tory, Massachusetts.

Methods

Our approach to power analysis uses Monte Carlo simulation in PC-SAS® to
model 2 parts of a 3-part regression and power analysis package (Fig. 1). Input are
annually replicated count data from dBase IV or SAS data files.
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STEP1

STEP 2

COMPUTE MEAN AND CV OF OBSERVED DATA

RANDOMLY GENERATE ANNUAL COUNT DATA
BASED ON OBSERVED MEAN AND CV

TABULATE POWER

STEP 3 SET INITIAL VALUES FOR #VISITS, MEAN, CV, TREND

FRANOOMLY GENERATE ANNUAL COUNT DATA
BASED ON SET VALUES OF #VISITS, MEAN, CV, TREND IV, TREND |

RUN REGRESSION ON GENERATED DATA

INCREASE OR DECREASE
#VISITS BASED
ON BINARY SEARCH

Figure 1. Flow diagram for Monte Carlo simulation of statistical power analysis.

Step 1. Conduct N annual population surveys for j years, resulting in an N x j
matrix of count data. Assuming adherence to assumptions of least squares regression
and adequate sample sizes (Madansky 1988, Rawlings 1988), data are modeled as
Yi = a+b ji+Ej, where Yj is the mean of N survey counts in year /. A trend in observed
field data is tested as H0:b = 0 using standard least squares regression of Y on j . Annual
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mean, CV, standard deviation (SD), and sample size values are written to an output
data set and an average CV and SD are calculated over all years.

Step 2. To calculate the power of non-significant results in Step 1, we use Monte
Carlo simulations to generate sample data within limits specified by annual mean and
SD values. For each year, values are used to generate annual survey count data sets
with the same number of annual replicates as in the observed data set. In each of
1,000 iterations, a random deviate representing a mean generated count is derived for
each year from a gamma distribution (Evans et al. 1993); hereby, the variation inherent
in each annual survey is maintained. A standard regression analysis is run on each of
the 1,000 iterations of generated data sets. H0:b = 0 for each regression line is tested
using a Mest statistic, based on the noncentral t distribution, calculated from the
parameter (PARMEST) and standard error (STDERR) values in the variance-
covariance matrix. The number of model iterations in which H0:b = 0 is rejected (i.e.,
1-P) is then counted at a = 0.1, 0.05, and 0.01 and output in tabular form.

Step 3. As a critical component of survey planning our final procedure is used
to estimate the number of survey counts/year required to detect a specified trend from
an initial population level over j years at a specified power (1-P). The procedure uses
a binary search (Wirth 1976) to determine the number of surveys needed to achieve
an approximate match (i.e., ± 2%) on the specified power. Because the solution space
is from 1 to q, where q is the maximum number of surveys in a year, the possible
number of macro iterations is Iog2(<7). Macro iterations continue until the number of
surveys resulting in the specific power is determined. A table is printed with the
number of surveys in each iteration and the resulting power. Use of the binary search
procedure assumes that the potential solution space (i.e., min and max number of
surveys) can be defined and that variation in power derived from 1,000 simulations
is within 1 percentage point.

Generation of sample-population count data within the macro follows proce-
dures in Step 2, but with the same CV and number of surveys for all years. Required
variables for Step 3 include an initial estimate of the number of required surveys
(VISITS), a (ALPHA) and l-(3 (POWER), number of model iterations for generating
sample data set (TRIALS), and definition of the minimum and maximum number of
surveys. Input parameters include the population coefficient of variation
(CVWITHIN), initial population mean (STARTMU), desired rate of annual change
(+ or -) in the population (CHANGE), and years over which the population sampling
is modeled (YEARS). The population CV may be approximated as the average CV
for all years (see Step 1). An annual mean population value is calculated following
an exponential model, Nt = 7V,(1 + ry~\ where r is the rate of change. The annual
mean population value and population CV are then used to calculate the gamma
distribution variables for generation of a sample data set of count data for each year.
Least-squares regression is conducted on the derived mean annual count, parameter
estimates and standard error values are extracted from the variance-covariance matrix,
the f-test statistic and associated probability level are calculated, and a power table
is printed. Power tables in Step 3 include three categories: trials in which a change
at the correct slope (+ or -) was detected at < the specified a, trials in which a
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change at the incorrect slope was detected at < the specified a, and trials in which no
significant change was detected.

Example. To demonstrate the utility of our power analysis approach and impor-
tant considerations when conducting power analysis we analyzed black-bellied plover
(Pluvialis squatarola), dunlin (Calidris alpina), red knot (C. canutus), willet (Catop-
trophorus semipalmatus), and total shorebird count data from the ISS, Marco River,
Florida, in winters 1975 and 1980 to 1987. Analyses included evaluation of CVs,
effect sizes (Cohen 1988), exponential rates of change and cumulative total change
in numbers, standard least-squares regression analysis to test H0:b = 0, analysis to
determine the statistical power of nonsignificant trends, and the number of annual
samples required to detect a + or - 5% annual trend, dependent upon results from
Step 1, over 10 years with 1-p = 0.80 at a = 0.05. Effect size was expressed as f2 (Cohen
1988) or SSmodel/SSerror, the degree to which a trend was present in the population count
data.

Results

The annual ranges in CVs were higher in red knot and dunlin count data (Table
1). Counts of black-bellied plovers, dunlins, red knots, willets, and total shorebirds
exhibited incremental exponential rates of change (r) of 0.29, 0.28, 0.95, -0.08, and
0.22, respectively (Table 2). Increases in counts of black-bellied plovers, red knots,
and total shorebirds were significant (P < 0.015); increases in counts of dunlins and
willets were not significant (P > 0.2). Population CVs for dunlins and willets were
high, with low indices of effect size.

At a = 0.1, 0.05, and 0.01, the power to find a significant trend in regression on
the dunlin (r = 0.28) and willet (r = -0.08) counts (i.e., results from Step 2) was 15%,
4%, and 0%, and 7%, 3%, and 0%, respectively. Based on the observed trends and
variance in dunlin and willet counts, we determined the number of annual surveys

Table 1. Mean number of black-bellied plovers (BBPL), dunlins (DUNL), red knots
(REKN), willets (WILL), total shorebirds (total), and associated coefficients of variation
(CV) recorded in the International Shorebird Survey, Marco River, Florida, winters 1975
and 1980 to 1987.

Year

1975
1980
1981
1982
1983
1984
1985
1986
1987

X

10
29
38
25
34
57
58
63
78

BBPL

CV

60.0
31.2
42.9
14.7
40.5
40.4
32.7
66.3

X

30
133
125
45

110
180
113
125
214

DUNL

CV

66.2
76.0

134.7
44.3
98.2
55.6
79.8

147.2

X

0
17
85
9

32
7

46
276
208

REKN

CV

86.1
50.5

204.7
120.3
142.2
164.2
64.3

140.2

X

60
38
56
36
35
68
46
28
31

WILL

CV

61.1
38.9
90.0
57.7

106.2
58.9
31.0
84.9

Total

~x

283
1129
939
809
818

1291
1716
1520
1411

CV

60.0
26.9
71.2
24.2
59.9
61.6
22.4
66.6

N

1
9
6
5
6
6
7
6
6
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required to detect a +5% and - 5 % annual change over 10 years at a = 0.05 and 1 - (3 =
0.80, respectively. An annual winter sampling intensity of 40 and 21 surveys would
be required to detect the specified trends at a = 0.05 and 1 - P = 0.80, respectively
(i.e., results from Step 3), for dunlin and willets. At a = 0.2, an increase from 5% to
20% in the probability of our analyses indicating a statistically significant trend when
no trend actually exists (i.e., Type I error), an annual sampling intensity of 20 and 10
surveys would be required to detect the specified trends at 1 - P = 0.80.

Discussion

Power is dependent on the interaction between variance, as reflected in the CV,
alpha, effect size, and the sample size (Cohen 1973, 1988; Bernstein and Zalinski
1983; Toft and Shea 1983; O'Brien and Lohr 1984; Rotenberry and Wiens 1985;
Kraemer and Thiemann 1987; Peterman 1990a; Cobb et al. 1994). In general, statisti-
cal power is positively related to alpha, effect size, and sample sizes, and inversely
related to the CV. Our analysis of shorebird data from Marco Island illustrates several
relationships among these variables when testing for trends in population count data.

For conservation purposes, we considered the observed trends in counts of black-
bellied plovers, dunlins, red knots, and total shorebirds to be of a magnitude important
to managers (Table 2). We considered all of these annual changes to be large (i.e., >
20%), but only the trend in counts of dunlins was non-significant. The black-bellied
plover data had a small population CV, especially for shorebird count data, and a
large effect size index. Red knot data had a large population CV and a large effect
size index. Total shorebird count data had a medium size population CV (i.e., = 50%)
and a relatively large effect size. The indication that observed trends in these counts
were significant, therefore, was not surprising.

At first inspection of the data, we believed that the observed 28% annual increase

Table 2. Estimates of parameters of change in the mean number of black-bellied
plovers (BBPL), dunlins (DUNL), red knots (REKN), willets (WILL), and total shorebirds
(total) counted during the International Shorebird Survey, at Marco River, Florida, in winters
1975 and 1980 to 1987.

Species

BBPL
DUNL
REKN
WILL
Total

CVWITHIN1

41
88

122
66
49

P

0.0001
0.2240
0.0018
0.4493
0.0126

ES2

0.50
0.03
0.22
0.01
0.13

%
Change'

+710
+ 188

+16,900
-30

+252

r<

+0.29
+0.28
+0.95
-0.08
+0.22

i-P5

0.04

0.03

'CVWITHIN = mean of coefficients of variation in annual samples expressed as a percentage.
2ES = f2 = effect size calculated as (SSm(lde|/SSCITUr) with a range from 0-1.

'Overall percentage change in abundance from 1975 to 1987 calculated from regression equation.

V = observed annual exponential rate of change.
sPower calculated for only non-significant results at a = 0.05.
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in counts of dunlin was of a magnitude that should have been statistically significant
in an ISS survey (Howe et al. 1989); however, our analysis showed that detection of
a trend with a population CV = 88% and a small effect size index (0.03) was difficult.
Thus, even with a mean annual sample size of =6 surveys, a trend in dunlin counts
of 28% could not be detected over 13 years at a = 0.05. Average annual sampling
effort needed to be 5.3 times and 3.3 times greater to detect the observed trend at a =
0.05 and 0.2, respectively. The results exemplify the serious implication that sample
variance has for population monitoring efforts. In this case, the required sampling
intensity is likely prohibitive for long-term monitoring by conservation agencies re-
sponsible for a multitude of species and species groups.

Results from analyses of the willet count data also are not quantitatively surpris-
ing, but demonstrate serious implications for conservation monitoring. While the
effect size index was relatively small (0.02, Table 2), the population CV was large
(66%). With a mean annual sampling effort of = 6 surveys and a population CV of
66%, we were not surprised at the lack of a significant trend. We believe that a 30%
decline in willet use of Marco Island over 13 years should be detectable if it actually
occurred. Based on these data, managers could not conclude that the trend indicated
by the data actually occurred, and any management actions based on these data would
be unfounded. To collect data that allow testing with sufficient power upon which to
base management decisions, minimum average annual sampling effort should have
been 21 and 10 surveys to detect the observed trend at a = 0.05 and 0.2, respectively.
If managers are willing to increase their Type I error rate to 20%, sufficient sampling
seems feasible.

As suggested by Peterman (1990a, 1990b) and Cobb et al. (1994), we believe
scientists monitoring trends in wildlife populations must rigorously design monitoring
efforts to have sufficient power to distinguish among alternative explanations of their
data, conduct pilot studies to estimate CVs before long-term projects are initiated,
estimate the power of sampling approaches used and examine through simulation the
effects of imprecision and inaccuracies, abandon the arbitrary tradition of setting a =
0.05 and consider desired power and acceptable P when setting a, calculate power
for several effect sizes (including that obtained in the original analysis when Ho is
not rejected), use 80% as an initial objective for power analysis, report the biological
ramification of Type II error, and not assert that a trend does not exist when an analysis
fails to reject Ho and l-(3 is low. Conservation agencies should balance the objective
of not missing a trend against the object of having a high level of certainty in trends
that are detected. In managing declining species, we suggest that it is biologically
safer to be conservative (i.e., increased power and a higher alpha).

We believe that our approach to determining statistical power in analysis of
trends in population count data using Monte Carlo simulations addresses many of
these issues and offers several important improvements over previously described
methods. First, the analysis can provide biologically significant results by ensuring
managers that population monitoring surveys are designed to detect biologically sig-
nificant changes in abundance. Secondly, use of the model requires the researcher to
have an in-depth knowledge of the variance components in each data set. We believe
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the importance of inter-observer, inter-year, inter-species, and other sources of vari-
ance in count data is underestimated by wildlife researchers. For locally transient or
flocking species this underestimation may lead to overly optimistic planning when
using population counts to detect trends. Thirdly, the assumptions and mathematical
algorithms in our model hold along the broad range from low (i.e., >3) to high number
of years and from low to high number of surveys per year (i.e., >2). Finally, the model
provides in one package all the analytical tools needed to plan and evaluate population
sampling designed to test for trends at multiple levels of statistical precision, and it
is a straightforward approach to simultaneously evaluating the relationships between
variance, sample size, effect size, alpha, and power. This package is available from
the senior author upon request or can be accessed on the World Wide Web at http://
www.freenet.fsu.edu/-sprandel.
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