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Abstract: Precise and accurate estimates of demographics such as age structure, productivity, and density are necessary in determining habitat and 
harvest management strategies for wildlife populations. Surveys using automated cameras are becoming an increasingly popular tool for estimating 
these parameters. However, most camera studies fail to incorporate detection probabilities, leading to parameter underestimation. The objective of this 
study was to determine the sources of heterogeneity in detection for trail cameras that incorporate a passive infrared (PIR) triggering system sensitive 
to heat and motion. Images were collected at four baited sites within the Conecuh National Forest, Alabama, using three cameras at each site operat-
ing continuously over the same seven-day period. Detection was estimated for four groups of animals based on taxonomic group and body size. Our 
hypotheses of detection considered variation among bait sites and cameras. The best model (w = 0.99) estimated different rates of detection for each 
camera in addition to different detection rates for four animal groupings. Factors that explain this variability might include poor manufacturing toler-
ances, variation in PIR sensitivity, animal behavior, and species-specific infrared radiation. Population surveys using trail cameras with PIR systems 
must incorporate detection rates for individual cameras. Incorporating time-lapse triggering systems into survey designs should eliminate issues associ-
ated with PIR systems.
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Precise and accurate estimates of population demographics such 
as age structure, productivity, and abundance are necessary to deter-
mine habitat and harvest management strategies for most wildlife 
species. Knowledge of these parameters has been acquired through 
various indices including transect sampling (Silveira et al. 2003), 
mark-recapture (Soisalo and Cavalcanti 2006), aerial sampling 
(Amstrup et al. 2004), and automated cameras (Cobb et al. 1996). 
Surveys using automated cameras are an increasingly popular tool 
for estimating these parameters; however, many studies fail to incor-
porate detection rates. Variation in detection rates may bias param-
eter estimates (MacKenzie et al. 2002), and failure to incorporate 
detection may lead to parameter underestimation. Three general 
sources of bias in camera surveys can be identified: those associ-
ated with differences among the species of interest, those associated 
with survey site characteristics, and those directly related to camera 
function.

The use of automated cameras to photograph wildlife in research 
was first described by Gysel and Davis (1956). Automated camera 
systems have evolved rapidly since that time and have been used 
to study avian nest predation (Lehman et al. 2008), foraging ecol-
ogy (Weckel et al. 2006), nesting behavior (Margalida et al. 2006), 

activity patterns (Wong et al. 2004) and estimating population de-
mographics (Cobb et al. 1996, Martorello et al. 2001, Soisalo and 
Cavalcanti 2006). Despite increasing use of automated cameras to 
survey wildlife, few researchers have explicitly estimated detection 
rates for cameras or more specifically, PIR sensors (Swann et al. 
2004, Rowcliffe et al. 2008). Researchers applying forward look-
ing infrared (FLIR) in aerial surveys have more frequently noted 
problems with infrared sensors than researchers using automated 
cameras. Examples of sources for these problems included snow 
depth, airborne moisture, sunlight and background structure tem-
perature (e.g., Kingsley et al. 1990, Amstrup et al. 2004, Bernatas 
and Nelson 2004, Locke et al. 2006). 

Our objective was to determine sources of heterogeneity in de-
tection for a commercially available trail camera incorporating a 
PIR triggering system. We estimated detection rates of one com-
mercially available PIR camera and described variability in PIR 
detection rates based on taxonomic group and body size. Our hy-
potheses of detection considered variation among bait sites and 
differences among individual cameras additive to effects of taxo-
nomic group and body size. Based on our results, we offer expla-
nations of potential contributing factors to variability in detection 
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rates. We also suggest methods of incorporating detection rates 
into demographic estimates. Finally, we propose an alternative that 
eliminates differences in detection among cameras.

Methods
We performed this research in conjunction with a wild tur-

key (Meleagris gallopavo) survey on the Conecuh National Forest 
(73,311 ha) in southern Alabama from 23 August to 6 Septem-
ber 2006. For this analysis, camera bait stations were established 
in areas consisting of small openings or dirt roads surrounded by 
managed pine forest. The average high temperature for the survey 
period was 33 C, and the average low was 19 C. Humidity averaged 
76% and one rain event occurred during the study. To ensure cam-
eras had the opportunity to trigger, sites for this research were cho-
sen where turkeys were observed during the survey. A tree at least 
20-cm DBH was selected to attach the cameras for each site, and 
a 10 m semicircle north of the tree was cleared of tall vegetation 
and overhanging branches to limit camera lens obstruction and 
unintended camera activation. All cameras were oriented north in 
order to avoid sun-blurred images. Each site was pre-baited with 
4 L of cracked corn for 7 days prior to camera deployment, and 
bait was replenished only on the day of deployment if necessary. 
Bait was broadcast from directly in front of the camera to 3 m out. 
Three PIR activated Penn’s Woods model DS-04 cameras (Penn’s 
Woods Products, Inc., Export, PA; Any use of trade, product, or 
firm names is for descriptive purposes only and does not imply 
endorsement by the U.S. Government.) were deployed at each site 
and operated continuously during the same 7-day period. Cam-
eras were attached to the same tree as close to ground as possible, 
and all were aimed at bait center. Units were set up to operate 24 h/
day with a 10-sec delay between pictures. We used settings recom-
mended by Penn’s Woods for programming digital cameras. Sites 
were visited a total of three times during the survey: pre-baiting, 
camera deployment, and camera retrieval. We examined images 
and recorded counts of each species.

We developed hypotheses and corresponding models concern-
ing detection rates a priori. Species grouped within these hypoth-
eses were added post hoc:

We hypothesized that detection varied by site, because each 
sites had a different vegetative background (different species, ages, 
vigor, etc.), and distance to background vegetation also varied. 
This would lead to different detection rates across sites, but cam-
eras at each site would have the same detection rate.

We hypothesized detection varied by camera due to differ-
ing sensitivities of PIR sensors. (Manufacturing tolerances, qual-
ity control, etc. caused each camera to detect animals at different 
rates.)

We hypothesized differences in detection occur due to ani-
mal size, so we grouped animals accordingly. Large animals (i.e., 
white-tailed deer [Odocoileus virginianus]) have the highest detec-
tion rate because they have the larger area of infrared radiation 
compared to background. Medium animals (i.e., wild turkey) are 
detected less frequently than large animals. Small animals (i.e., 
raccoon [Procyon lotor], nine-banded armadillo [Dasypus novem-
cinctus], and cottontail rabbit [Sylvilagus floridanus]) are detected 
less than large and medium animals, but more than very small ani-
mals (i.e., gopher tortoise [Gopherus polyphemus] and mourning 
dove [Zenaida macroura]).

We also hypothesized feathers (i.e., mourning dove and wild 
turkey) emit less infrared radiation which results in lower detec-
tion rates for birds than other animals.

We hypothesized birds had lower detection rates than non-
feathered animals, but larger sized birds (i.e., wild turkey) have 
higher detection rates than smaller birds (i.e., mourning dove).

We hypothesized that a size threshold for detection existed with 
the PIR sensors. Because white-tailed deer have the greatest area of 
infrared radiation relative to the background, they have the highest 
odds of detection. All other animals have the same detection rate.

We combined additive effects of animal groupings with both 
site and camera models, respectively, to determine the best ap-
proximating model.

We used the Huggins closed population estimator (Huggins 
1989, 1991) in Program MARK (White and Burnham 1999) to 
estimate the probability of detection (p) because it allowed us to 
include individual covariates. We treated each camera as a po-
tential capture event, therefore probability of initial capture and 
recapture were constrained to be equal. An event occurred when 
at least one camera was triggered during any 9-sec interval. We 
created a capture history for each event. The initial capture was the 
image resulting from the camera that triggered first. Recaptures 
consisted of the image(s) resulting from the other two camera(s) 
subsequently triggering within 9 sec of the first camera. This inter-
val was long enough to exclude multiple images of the same event 
from an individual camera and was enough time to allow poten-
tial recapture cameras to initialize, focus, and capture an image. 
Models were compared in Program MARK using AIC corrected 
(AICc) for small sample sizes (Burnham and Anderson 2002). We 
estimated recapture probability in the Huggins model as a surro-
gate for detection; therefore, assessing goodness-of-fit (White and 
Burnham 1999) was not appropriate. Actual detection rates were 
not important for this exercise, so we compared odds ratios (βs) 
among cameras and animal groups. We used indicator variables 
for sites and animal groups and a logit link to estimate log odds 
of detection. To compare among sites and animal groups, we cal-
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culated the relative odds of detection as the inverse natural log of 
the differences in the βs for each group. We did not present ani-
mal group-specific detection rates because they were different for 
each camera. We compared the camera with the highest odds of 
detection to other cameras, and the animal group with the highest 
odds of detection to other groups. Model averaging was not incor-
porated into these results, since model selection was unequivocal 
(wAICc = 0.9998).

Results
Data at one site were discarded because only one camera re-

corded any images. Even prior to modeling, the number of events 
triggered by individual cameras at each site varied considerably. 
The PIR sensors detected a total of 868 events, 701 of which re-
sulted in an image of an animal (81%). Variation in the number 
of events was high at each site (Table 1). Two sites (1 and 4) had a 
high percentage of images with animals present and low variability 

between cameras (83–93% and 97–100%, respectively). The other 
two sites (2 and 3) had greater variation (34–62% and 50–83%, 
respectively) and a greater number of images that did not include 
any animals.

The most parsimonious and best approximating model was 
p(camera+size) (Table 2). This model estimated detection rates for 
individual cameras at each site and four size covariates. It had the 
largest model probability (w = 0.9998), and best fit (Dev = 1845). 
The next best approximating model was p(camera+threshold) 
(∆AICc = 18), but had negligible model probability (w = 0.0002). 
Odds of detection ranged from 0.02 to 0.66 among cameras (Fig-
ure 1). Therefore the camera with the smallest detection rate was 
0.02 times as likely to detect an animal as the one with the largest 
detection. Large animals were most likely to be detected followed 
by small, medium, and very small animals, respectively (Figure 2). 
Despite large differences in relative odds of detection, 95% confi-
dence intervals overlapped in most cases (Figures 1, 2).

Figure 1.  Odds of detection of automated cameras relative to the camera with the highest 

estimated detection (9) and 95% confidence intervals.
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Figure 1. Relative odds of detection among cameras. Bars indicate 95% confidence limits.

Table 1. Number of images captured by each camera at each site and percentage of images with animals 
present from a wildlife survey of Conecuh National Forest, summer 2006.

Site Camera Total images % images w/animals

1 1 86 83 %
1 2 49 86 %
1 3 107 93 %
2 4 110 62 %
2 5 98 59 %
2 6 56 34 %
3 7 48 83 %
3 8 6 67 %
3 9 4 50 %
4 10 121 98 %
4 11 26 100 %
4 12 157 97 %

Table 2. Comparison of models and hypotheses for estimating detection rates of PIR-activated cameras from Conecuh National Forest, summer 2006. 

Model Hypotheses1 AICc2 Δ3 w 4 Lik5 K Dev6

p (camera+size) 1,3 1877 0 0.9998 1.00 16 1845
p (camera+threshold) 2,6 1895 18 0.0002 0 13 1868
p (camera) 2 1904 27 0 0 12 1880
p (camera+feathers) 2,4 1905 28 0 0 13 1879
p (camera+feathersize) 2,5 1906 29 0 0 14 1878
p (site+size) 1,3 2126 249 0 0 8 2109
p (site+threshold) 1,6 2142 265 0 0 5 2132
p (site) 1 2151 274 0 0 4 2143
p (site+feathers) 1,4 2152 275 0 0 5 2142
p (site+feathersize) 1,5 2153 276 0 0 6 2141
p (.) Intercept 2184 307 0 0 1 2182

1. Indicates hypothesis(es) supported by the model; see text for descriptions.	 4. exp(–0.5Δi) /   exp(–0.5Δi)
2. Akaike’s (1973) Information Criterion corrected for small sample size.	 5. exp(–0.5Δi)
3. AICci  – min(AICc).	 6. –2ln(Lik(model|data))

 •i=1
R



2010 Proc. Annu. Conf. SEAFWA

Estimating Detection in Remote Camera Research  Damm et al.    128

Discussion
One potential cause of variation in detection rates among differ-

ent animal groups is the variation in intensity of infrared radiation 
a species emits. Most commercially available trail cameras operate 
using PIR, which only detects changes in background infrared ra-
diation wavelengths. Therefore, if species have different body tem-
peratures and insulative properties (feathers, fur, shell, scales, etc.), 
then differences in PIR sensitivity would contribute to variability 
in detection rates between animal groups. For example, Butler et 
al. (2006) could not detect turkeys on the roost with a FLIR camera 
unless their featherless heads were exposed. Counter to our size 
hypothesis, the odds of detecting medium-sized animals (turkeys) 
were lower than some smaller animals (small group). Perhaps due 
to their feathered covering, turkeys might emit less infrared radia-
tion than small mammals. Although the feather hypotheses were 
not supported by our data, lack of fit for these models could have 
been caused by limited sample size and clustering non-feathered 
animals into a single detection group. Ideally, we would have 
avoided grouping species by modeling detection rates for each; 
however, some species were not counted frequently enough for es-
timating detection individually.

Both background temperature and environmental conditions 
(rain, snow, wind, cloud cover, etc.) are potential causes of lower 
detection rates. If differences in background temperature and the 
target species are not large enough, the PIR sensor will not trigger 
the automated camera to capture an image. Swann et al. (2004) 
found some models of commercially available automated cameras 
were more sensitive to changes in background temperature than 
others. Bernatas and Nelson (2004) determined overcast skies al-
lowed for greater detection of bighorn sheep (Ovis canadensis) 
than sunny skies in aerial FLIR surveys. They also determined that 

flat rock surfaces emitted more infrared radiation than soil, grass, 
and sagebrush vegetation; therefore, sheep were detected less fre-
quently in these areas. Kingsley et al. (1990) reported problems 
with detecting ringed seal (Pusa hispida) lairs on ice using FLIR 
that were related to snow depth, ambient temperature, wind, and 
sunlight. Known polar bear (Ursus maritimus) dens were missed 
in a FLIR survey due to fresh snow, wind, and airborne moisture 
(Amstrup et al. 2004). Locke et al. (2006) found external tempera-
tures of wild turkeys and background structure (roost and ground) 
to be too close, regardless of other weather conditions, which made 
detecting wild turkeys with FLIR difficult. While these variables 
could contribute to lower or varied detection rates, we controlled 
for them by placing sites in similar habitats, aiming all three cam-
eras at the same focal point, and by collecting data at the four sites 
at the same time.

Manufacturing tolerances of camera components could also 
contribute to variability in detection rates and could be linked to 
several sources. The PIR components could have varied in sensi-
tivity, which may have led to variable detection rates. Swann et al. 
(2004) demonstrated leveling a camera may not align the PIR sen-
sor detection zone perfectly to the area of interest. This misalign-
ment could lead to presumed false detections where an animal is 
present on site, missed by the camera, but detected by the sensor. 
Therefore, the direction in which the sensor is facing when mount-
ed inside the camera housing could influence detection rates. Be-
cause our intent was to examine performance of the cameras un-
der field conditions, we did not test the aim or sensitivity of PIR 
sensors in our units; thus, they are plausible explanations for at 
least some variation we observed. However, we aimed cameras at 
the same focal point at each site. If our PIR sensors were mounted 
within the cameras similarly, aim should not have contributed to 
variability in detection.

Detection rates for individual cameras should be incorporated 
into population estimation methods to minimize the effects of PIR 
sensor variability. Failure to account for detection reduces the reli-
ability of estimates. The use of variance inflation factors such as 
in model selection favors simpler models when model fit is poor, 
but does not eliminate or reduce the bias in parameter estimates 
(Burnham and Anderson 2002). An “observer” effect could be in-
cluded into the models that would account for variability in PIR 
sensitivity of individual cameras. This method could complicate 
analyses because a parameter for each camera would be added to 
the model, potentially increasing amount of data needed to yield 
reasonable precision. Mixture or random effects models would 
be more parsimonious than observer effects models and could 
estimate detection based on groups of cameras with similar rates 
(Pledger 2000). They also allow for the use of covariates and can be 

Figure 2.  Odds of detection relative to the most frequently detected size of animal (large) and 

95% confidence intervals.
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Figure 2. Relative odds of detection among size groups of animals. Error bars indicate 
95% confidence limits.



2010 Proc. Annu. Conf. SEAFWA

Estimating Detection in Remote Camera Research  Damm et al.    129

fitted using Program MARK. However, the lack of ability to distin-
guish among sources of variation is inherent within these models. 

Much of the literature that addresses use of trail cameras to es-
timate population parameters is based on the assumption that a 
direct relationship exists between the number of images captured 
over time and density of the species being surveyed (e.g., Jacob-
son et al. 1997, Main and Richardson 2002, Silveira et al. 2003, 
McKinley et al. 2006). These estimators do not include measures 
of detection for individual cameras or environmental factors. 
Proper use of mark-recapture methods addresses these issues, but 
is particularly sensitive to un-modeled heterogeneity in detec-
tion rates (White et al. 1982). Thus, differences in detection rates 
among cameras must be estimated to avoid biased estimates of 
population parameters. Swann et al. (2004) explored measuring 
zones of detection for several models of trail cameras. Rowcliffe 
et al. (2008) used animal group sizes and movement rates to ac-
curately estimate density of three of four ungulate species. If PIR 
triggering systems are used for population estimation, identifying 
these zones of detection for individual cameras and controlling for 
group size and environmental conditions may reduce the effect of 
heterogeneity in animal detection caused by PIR sensors (Swann et 
al. 2004). This identification would in turn reduce bias in popula-
tion estimates, but could not fully account for large differences in 
detection among cameras.

Time-lapse systems provide more reliable estimates and require 
fewer parameters because they eliminate the need to estimate de-
tection rates for individual cameras. With a time-lapse system, the 
camera captures an image on a fixed interval, irrespective of spe-
cies presence, location, or environmental conditions. Digital trail 
cameras have great advantages over film cameras that allow them 
to function for several weeks in the field and store thousands of 
images, thus making surveys using a time-lapse triggering system 
more feasible. Depending on the time interval, the number of im-
ages that must be analyzed could be increased substantially by us-
ing time-lapse systems. However, eliminating the effects of PIR 
sensor variability outweighs this cost because of more parsimoni-
ous model selection (fewer parameters and more data) and less 
biased demographic estimates (less un-modeled variation in de-
tection). Using a time-lapse system would further standardize sur-
veys because they would be performed on a fixed interval. Because 
of the inherent variability associated with PIR systems, time-lapse 
systems reduce the potential sources of variation in abundance es-
timation from repeated count (e.g., Royle 2004) or mark-recapture 
methods.
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